
$\ensuremath{\textbf{Appendix}}\ensuremath{\,\textbf{A}}\xspace$ - Map showing the location of Do-Minimum improvements schemes and proposed mitigation measures

Appendix B Risk Matrix for Rotherham LDF Modelling Methodology v1.3 17-Jul-12

ID	Date logged	Status	Risk	Potential Impact(s)	Potential Mitigation	Further data required	Cost (includes cost of data collection and	Timescale (includes timescales of data	Recommended Mitigation
							consultant fees)	collection and consultant fees)	
							Low (<e5k) Med</e5k) 	Short (<1 week) Med	
Ba	e Model V	alidation					High (>£5k)	Long (>1 month)	
1	12/07/2012	being addressed	Existing 2007 base model is validated to data from pre-2007 and does not necessarily reflect	- LDF modelling could be open to criticism - LDF modelling may not provide reliable	 Re-validate the SATURN highway model to a 2012 base year 	1. New highway counts and TrafficMaster data	1. High	1. Med	We recommend re-validating the SATURN highway model using: - existing counts (both pre-2007 and 2007-2011) factored to 2012 traffic levels:
			traffic conditions well near proposed LDF development locations	assessment of the impacts/delays and required mitigation					 new counts to plug gaps in screenlines and in areas identified as important to the assessment of the LDF, such as Rotherham town centre and near to Basingthorpe Farm
					2. Re-validate the PT model	2. Potential new PT counts	2. High	2. Med	(as already identified) - TrafficMaster data for journey time validation (we assume this can be provided by
									RMBC)
									We do not recommend re-validating the PT model as we understand the focus of the study is to assess the impact on the highway network and therefore it would be disproportionate
									to spend time/cost improving the PT model. In addition the PT costs are fixed in SRTM2 (see discussion on use of a Variable Demand Model below) and therefore do not impact
									on the highway model. However it is important to get the relative level of demand between modes consistent (due to mode shift in the VDM) thereforewe recomend factoring the
2	12/07/2012	live	Roadside Interview Survey (RIS) data used in	- Matrix building could be open to criticism	Collect new RIS data and re-build the prior	New RIS	High	Long	2007 validated PT trip matrix to 2012 levels using count data (if available) or factors derived from NTEM. None recommended due to data limitations and time/cost implications of collecting new
ĩ	120112012		building prior matrix are pre-2007. TAG recommends RIS should be less than six years	 The matrix may not represent current traffic patterns if they have changed significantly in 	matrices			Long	RIS and re-building the prior matrix
3	12/07/2012	live	old (TAG Unit 3.19 para 8.1.1). Automatic Traffic Counts (ATCs) used to	the past 6 years.	Expand old RIS to new ATC counts	New ATCs for all RIS sites	High	Med	None recommended due to data limitations and time/cost implications of collecting new
			expand RIS data in matrix building are from pre-2007. TAG recommends new 2-week			(approx 100 sites across Rotherham and Sheffield)			ATCs and re-building the prior matrix
			ATCs should be used to re-expand old RIS (TAG Unit 3.19 para 4.3.3).						
4	12/07/2012	live	TAG recommends starting Matrix Estimation (ME) from a prior matrix, rather than a	Matrix building could be open to criticism ME may alter the shape of the matrix and	1. Start ME from the prior matrix	None	1. Med	1. Med	Starting from the prior matrix would require significantly more effort to re-validate, as it would require us to put effort into re-validating traffic flows in Sheffield as well as
			previously validated matrix, so the impact of ME is minimised (TAG Unit 3.19 para 8.3.3)		 Check the impact on the shape of the marks and trip length distribution, and apply constraints as required to control ME 	c	2. Low	2. Short	Rotherham. In addition, to adhere to new TAG, we would have to re-design the use of existing counts to ensure they form screenlines, which would likely require collecting new counts in Sheffeld as well as Rotherham. We therefore recommend using the
					constraints as required to control ME				counts in Snettied as well as konternam. We therefore recommend using the validated matrix from 2007 as the starting point for ME, and argue that we are just tweaking it to re-focus the validation on the areas important for the LDF. This approach
									weaking it to re-locus the valication on the areas important for the LDF. This approach was accepted for Waverley Link Road MSBC. We also recommend checking the impact on the shape of the martix and trip length distribution, and apply constraints
5	12/07/2012	beina	TAG recommends that manual classified	- Model calibration/validation could be onen to	1. Collect new ATCs at all count site locations	1. New counts	1. High	1. Long	as required to control ME. We recommend:
ſ		addressed	counts (MCCs) should be factored up to ATC counts to account for day-to-day variability and	criticism.	used in cal/val				 collecting new ATCs at important locations (ensuring that the model will be robust where it matters)
			to reduce the confidence interval of the count (TAG Unit 3.19 para 4.3.2, 4.4.5 and 8.3.5)		 Collect new ATCs at important locations and where new MCCs have been collected 	2. New counts	2. Med	2. Short	 collecting new ATCs where new MCCs are being collected (demonstrating a willing to adhere to new TAG where practical), and
1]	1			3. Use existing nearby ATCs	3. None	3. Low	3. Short	 using existing nearby ATCs in less critical areas (keeping the cost and timescales proportionate to the study)
6	12/07/2012	live	TAG recommends that the use of MCCs to	- Model calibration/validation could be open to	1. Collect new MCCs at all ATC count	1. New MCCs	1. High	1. Med	We recommend using nearby MCCs to split ATCs because it would be
ľ		1	derive average user class splits to apply to ATCs should be avoided (TAG Unit 3.19 para	criticism.	locations used in cal/val				disproportionate to the scope of the study to collect and process a significant number new MCCs.
]	1	4.4.4)		2. Use nearby MCCs to split ATCs into user class	2. None	1. Low	2. Short	
7	12/07/2012	live	mini-screenline counts rather than individual	- Many of the existing counts do not form part of a screenline so would be wasted	 Collect new counts to complete screenlines or mini-screenlines 	1. New ATCs and MCCs	1. Med/High	1. Med	We recommend grouping existing counts into screenlines or miniscreenlines where possible. We also recommend using individual link counts at important
			link counts (TAG Unit 3.19 para 8.3.4)	 Model calibration/validation could be open to criticism. 	2. Group existing counts into screenlines or	2. None	2. Low	2. Short	locations where sufficient data to form screenlines is not available - we have contacted the DIT and they are open to this approach provided you can demonstrate a valid reason
					miniscreenlines where possible 3. Use individual link counts at important	3.None	3. Low	3.Short	for doing so and that we have a high degree of confidence in the count. We do not recommend collecting new counts to complete screenlines as they would often
					locations where sufficient data to form screenlines is not available	5.N011e	3. LOW	3.3000	be on minor roads where the low traffic flows do not warrant the expense of collecting the data.
For	ecasting								
8	12/07/2012	live	Method to control overall level of 'unconstrained' future year demand:	- Could over or underestimate the total level of future year demand	1. Adjust underlying NTEM planning data in line with LDF	 Net change in population and jobs in 	1. Low	1. Med	The first option would require an estimate of the net change in landuse (population and jobs) in Rotherham between 2012 and the modelled future year. The second option would
			1. National Trip End Model (NTEM) planning assumptions not in line with LDF			Rotherham between 2012 and modelled future year			provide the analysis of the standard of the LDF development trip generations as the overall growth in demand would not be controlled to NTEM. The first option would get the
			2. But NTEM growth also takes account of exogenous changes through time, such as		2. Adjust underlying NTEM planning data to	2. Accurate estimates of	2. Low	2. Med	growth in demand into the right model zones and allow sufficient control over the ins and outs at each site to assess the impact on the local network and is the method we normally
			changes to car ownership and household structure.		zero growth in population and jobs so that growth rates reflect just the changes in car	the LDF deveolopemnt trip generations			use for forecasting. The second option allows tighter control of the ins and outs at each site and is closer to the method normally used for a Transport Assessment.
					ownership and household structure, then add development trips on top				Our recommendation would be for the first option as it is less reliant on accurate estimates of trip generations at all LDF sites.
9	12/07/2012	live	Method to prepare 'constrained' demand		1. Use a Variable Demand Model (VDM) to	1. None	1. High	1. Med/Long	We recommend using a VDM to take account of future year changes in travel costs
			taking account of changes in values of time, vehicle operating costs, PT fares, congestion	account of these things and could over or underestimate total car trips, depending on the	constrain future year demand to changes in travel costs				and adjust the demand accordingly to ensure a more robust assessment. We recommend using SRTM2 (see separate sheet for discussion)
			and future year schemes.	relative balance between increased congestion and values of time, reduced vehicle operating costs, and the impact of future transport	2. Choice of VDM between Sheffield and Rotherham Transport Model 2 (SRTM2) and	2.None	2. See separate sheet	2. See separate sheet	
				schemes such as BRT North - Forecasts could be open to scrutiny	SRTM3		for comparison between SRTM2 and SRTM3	for comparison between SRTM2 and SRTM3	
10	12/07/2012	live	Use of Variable Demand Model (VDM) for testing mitigation measures	 Fixed demand for the 'with mitigation' would not account for any mode or destination 	1. Run VDM for each 'with mitigation' test	1. None	1. High	1. Med/Long	We would not expect significant demand responses due to the mitigation measures (the biggest demand responses occur in preparing the future year reference demand) and the
				response as a result of the mitigation - VDM runs for the 'with mitigation' would take	Run fixed demand (non VDM) for each 'with mitigation' test	2. None	2. Med	2. Med	most sensitive response of route choice would be taken into account in the assignment. We therefore recommend running fixed demand assignments for the 'with
				longer to run (days rather than hours) and may not have a material impact on the assessment	<u>.</u>				mitigation' during option testing, with the potential to run a final mitigation package through the VDM.
				(depending on the mitiagtion being tested)					
11	12/07/2012		Need to agree on what future year(s) to model						
12	12/07/2012	live	The simulation coding in the model does not	- The model would not be fit for purpose for	1. Extend the simulation network	1. Network data (signal	1. High	1. Med	Extending the simulation network would require new network coding, new network data
			extend beyond the Sheffield and Rotherham district boundaries	assessing LDF sites at Wath, Brampton & Swinton, in particular it could not accurately model the impact on the A6195/A6023 corridor		timings etc), new counts etc outside Rotherham district			and counts outside Rotherham district, and require calibrating/validating. Further, the robustness of the modelling may still be criticised as the new simulation coding would still be at the critic of the detailed model area. Evelopment and even with units of the critical model of the detailed model.
				mouer the impact on the A6195/A6023 corridor		uisifiCt			be at the edge of the detailed model area. Following discussions with youwe recommend not extending the simulation coding and accepting the limitations of the model to assess the impact of LDD developments in these areas.
13	12/07/2012	live	Trip distributions of LDF developments from nearby zones or a gravity model	- Using nearby zones would be quicker and easier, but relies on a reasonable distribution	1. Use a gravity model to distribute trips	 School places and shopping floorspace 	Low/Med	Short/Med	mode to assess the impact of LDD developments in these areas. There is a significant amount of new development in the LDF and we would expect the new housing and jobs to generate trips between each other, we therefore recommend
	1	1	-, a gravity model	easier, but relies on a reasonable distribution in the base matrices, which may not be true for zones on the periphery of the district.		- Work places from census JtoW			new housing and jobs to generate trips between each other we therefore recommend using a gravity model to distribute the new LDF trips.
				- Using nearby zones may not generate trips between new developments		- Population from census			
14	12/07/2012	live	Model zones and zone connectors may not be detailed enough to accuratelty represent	 Development trips may not appear on the network at the correct locations, which would 	1. Review zones prior to ME and amend as necessary	Further details (or agreed assumptions) on	Low	Short	We expect the majority of the new LDF developments will be built on current green/build field sites and are therefore unlikely to have a suitable model zone to separate them from
			access to/from the LDF developments	affect routing and also junction delays		development access			existing developed areas, we therefore recommend reviewing and adjusting the zones and zone connectors as necessary to better represeent access to/from the LDF
15	12/07/2012	live	Need to agree LDF development trip			Further details (or agreed			developments.
			generations, trip purposes and mode share			assumptions) on development size, type and mode share			
Sco	pe of LDP	Impact A	ssessment - some things to consider Are you interested in identifying impacts	Our understanding is the former as this could		and mode snate	1		
10		and a	Are you interested in identifying impacts caused by specific developmets, or just assessing the impact on the network as a	Our understanding is the former as this could be used in discussions with developers on apportionment of mitigation costs					
17	12/07/2012	live	whole? Are mitigation measures likely to include PT	VDM would be the best tool to assess impact					
Ľ		1	and 'smarter' measures aswell as highway?	of PT measures TAG quidance on modelling smarter choices is					
				not particularly useful - it is generally a case of making some assumptions and manually					
18	12/07/2012	live	Need to agree the types of model output and	adjusting the demand matrices					
	Ì	1	analysis we provide, both for use in identifying impacts of LDF and mitigation, and for final						
19	12/07/2012	live	reporting What is the target network performance when						
			considering required mitigation measures: is it current levels of delay, all junctions operate within capacity, or would you be willing to						
			within capacity, or would you be willing to accept some delays in order to deliver the LDF?						
20	12/07/2012	live	How to develop mitiagtion measures - there could be merit in working with an RMBC						
L			officer to develop and test mitigation, using the model as a tool.						
21	12/07/2012	live	To what extent do we (MVA and RMBC) need to consider the affordability and deliverability						
	1	1	of mitigation measures	1			1		

Appendix B Risk Matrix - SRTM2 vs SRTM3 v1.1 17-Jul-12

No	Model element	SRTM2	SRTM3	Comments
1	Model system	SATURN highway assignment PT-TRIPS PT assignment DIADEM demand model Approx 2-3 day run time for 2036 Simple set up	SATURN highway assignment Voyager PT assignment Bespoke TRAM-based demand model (with optional parking and park-and-ride models) Approx 4 day run time for 2036 More complicated set-up	 SRTM2 will be quicker and easier to use 'out of the box' SRTM2 setup is much simpler than SRTM3 and is less prone to user input
2	Matrix basis	Origin-Destination based	Production-Attraction and Tour based, so trips throughout the day are linked	 Tour based demand matrices are important for appraising schemes that differ by time period (such as Road User Charging), and that impact mode choice (ie if you go to work by PT you cannot come back by car), however this functionality is not relevant for assessing the impact of the LDF. PA-tour based matrices are useful for linking both production and attraction ends of trips (ie for a commute tour you must return to the same home as you came from), however the current system is not set up to do this for new development trips
3	Main modes	Car, PT	Car, PT, Walk/Cycle	 The inclusion of walk/cycle as a main mode allows for a proper PT demand response as PT scheme demand often draws from walk/cycle rather than car, however this is unlikely to impact significantly on the assessment of the LDF
4	Time periods	3 time periods: 0800-0900, avg 1000-1600, 1700-1800	9 time periods: 0700-0800, 0800-0900, 0900-1000, avg 1000-1300, avg 1300- 1600, 1600-1700, 1700-1800, 1800-1900, avg 1900-2300.	 Micro-time period choice is important for appraising schemes that differ by time period (such as RUC), and for modelling parking and park-and-ride, but is not necessary for assessing the LDF More time periods to assign means the model takes longer to run
5	Parking capacity restraint model	Does not include a parking model	Includes optional parking restraint model in Sheffield city centre, but not Rotherham (can be turned off if not required)	 Parking restraint in Sheffield could impact the choice of mode for trips between Rotherham and Sheffield, and may supress car demand for future years, however we have found the impact to be smaller than expected The SRTM3 parking model requires more user inputs, checking and run time
6	Park-and-Ride model	Does not include P&R model as standard, however there is a post-VDM add-on P&R module that can be used to adjust the matrices to test new P&R sites or to include them in future year reference demand forecasts	Includes optional P&R model which acts as a main mode in the VDM (can be turned off if not required)	 The SRTM2 P&R module has not been used in earnest for several years, so would require some effort to 'get out of the box' and potentially re-calibrate The SRTM3 P&R model requires more user inputs, checking and run time
7	PT crowding	PT model is in PT-TRIPS so does not include crowding	PT model is in Voyager and includes crowding	 Crowding is important for appraising PT schemes, such as BRT, but is unlikely to have a significant impact on the LDF assessment. Without crowding there is an inherent assumption that PT operators will change their fleet in line with demand.
8	PT costs	PT costs are fixed on each loop of the VDM	is response to chnages in highway congestion (for PT sub-modes using road) and crowding	- Arguably not required for assessing the LDF
9	Assignment user class	Employers Business, Commute, Other, LGV, OGV	Employers Business, Other Low Income, Other Medium Income, Other High Income, LGV, OGV	 Assignment demand was segmented by income bands in SRTM3 (required for appraising RUC and useful for BRT) but this is not necessary for assessing the LDF, indeed it may be preferable to maintain the difference between commute and other in the assignments
10	Data extracton	SATURN matrices	SQL-based databases	 SRTM3 is more flexible for extracting trip demand data, however most of the data extraction for LDF will be from the highway assignments (delays etc) rather than demand-based, in which case the two models are equal.
11	Zone system	510 zones plus 20 'dummy' zones	525 zones	 SRTM2 has 20 dummy zones (originally intended for testing proposed P&R sites) which could be used to improve the representation of LDF developments SRTM3 does not include dummy zones so would be more difficult to change to zone system to represent the LDF developments

Appendix C Sectored Trip Demand Matrices - Moming Peak Hour or Tag

	2011 Base			2	3	4	5	9	7	80	6	10	Total	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rotherham	1	9151	889	350	255	286	3356	295	444	178	617	15821	
$ \left $	Wath, Swinton, Rawmarsh	2	1476	1243	104	29	42	568	393	365	6	182	4413	
4 479 40 310 311 313 353 354 319 315 7 6 237 236 311 313 353 36 30 313 7 6 317 313 313 313 313 313 313 314 314 10 313 314 314 313 313 313 313 313 313 313 313 314 <td>Maltby, Dinnington, Thurcroft</td> <td>m</td> <td>576</td> <td>203</td> <td>494</td> <td>82</td> <td>114</td> <td>458</td> <td>45</td> <td>49</td> <td>368</td> <td>303</td> <td>2692</td>	Maltby, Dinnington, Thurcroft	m	576	203	494	82	114	458	45	49	368	303	2692	
5 403 7.2 193 0.02 2.12 9.10 1.12 6 53.2 2.13 2.13 5.13	Aughton, Wales	4	479	4	216	917	127	958	45	19	65	119	2985	
$ \left [\begin{array}{ccccccccccccccccccccccccccccccccccc$	Rotherham rural	5	458	72	139	102	212	564	38	159	112	177	2034	
	Sheffield	9	2277	254	300	528	242	51532	786	601	2345	2062	60928	
9 253 293 313 310 110 455 313 310 311 310 311	Barnsley	~	631	347	32	25	42	812	18	567	424	819	3718	
90 207 64 314 134 134 134 214	Don caster	80	525	293	125	21	167	485	535	49	80	465	2673	
Diol 956 131 303 100 51 310 510 510 510 510 510 500 <td>Chesterfield / Nottingham</td> <td>б</td> <td>207</td> <td>49</td> <td>347</td> <td>134</td> <td>120</td> <td>3444</td> <td>261</td> <td>1</td> <td>0</td> <td>1370</td> <td>5947</td>	Chesterfield / Nottingham	б	207	49	347	134	120	3444	261	1	0	1370	5947	
Trail 1673 338 aids 219 1 321 338 aids 236 337 338 aids 338 aids 338 aids 338 aids 338 aids 338 aids 338 338 338 331 338 331 338 <t< td=""><td>Rest of Model</td><td>10</td><td>946</td><td>131</td><td>336</td><td>104</td><td>54</td><td>1782</td><td>661</td><td>596</td><td>880</td><td>1708</td><td>7197</td></t<>	Rest of Model	10	946	131	336	104	54	1782	661	596	880	1708	7197	
1 2 3 4 3 6 7 8 3 1 1 1 1 2 3 4 3 6 3		Total	16725	3538	2445	2198	1406	63958	3078	2850	4389	7821	108409	
1 20.1 1.1 2.0 1.1 2.0 1.1 2.0 2.1 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 <th2.0< th=""> <th2.0< th=""> <th2.0< th=""></th2.0<></th2.0<></th2.0<>														
$ \begin the formula (1, 1, 1, 2, 2, 3, 2, 1, 2, 1, 2, 3, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	2028 Do Min (unconstrained)			2	m	4	2	9	7	œ	6	10	Total	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rotherham	-1	9249	971	417	281	301	4506	356	522	260	750	17612	
wgwn, huncreft 3 000 39 301 <th< td=""><td>Wath, Swinton, Rawmarsh</td><td>2</td><td>1545</td><td>1310</td><td>110</td><td>38</td><td>48</td><td>791</td><td>430</td><td>421</td><td>54</td><td>230</td><td>4949</td></th<>	Wath, Swinton, Rawmarsh	2	1545	1310	110	38	48	791	430	421	54	230	4949	
13 1 1 2 4 6 6 5 23 10	Maltby, Dinnington, Thurcroft	m	608	198	503	89	114	609	52	61	388	332	2955	
ort 5 444 75 136 106 210	Aughton, Wales	4	490	46	202	910	138	1077	51	24	74	138	3150	
6 74.8 57.1 34.6 76 44.3 73.0 73.0 73.1 73.0 74.0 73.0 74.0 73.0 74.0 73.0 74.0 73.0 74.0	Rotherham rural	5	454	75	138	106	202	599	40	159	115	174	2062	
1 7 7.44 311 431 34 46 800 2.5 734 301 36 <	Sheffield	9	4126	572	546	706	423	57301	913	737	2619	2341	70286	
Refindment 8 615 37 140 125 146 72 126 10	Barnsley	~	744	381	48	34	48	890	22	678	490	920	4255	
Modification 10 1364 197 400 135 430 135 430 135 430 135 430 135 130 131 <t< td=""><td>Doncaster</td><td>80</td><td>615</td><td>327</td><td>143</td><td>28</td><td>166</td><td>542</td><td>617</td><td>99</td><td>10</td><td>529</td><td>3038</td></t<>	Doncaster	80	615	327	143	28	166	542	617	99	10	529	3038	
100 1145 1181 205 211 211 205 </td <td>Chesterfield / Nottingham</td> <td>6</td> <td>364</td> <td>97</td> <td>400</td> <td>155</td> <td>140</td> <td>3725</td> <td>292</td> <td>-1</td> <td>0</td> <td>1545</td> <td>6719</td>	Chesterfield / Nottingham	6	364	97	400	155	140	3725	292	-1	0	1545	6719	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Rest of Model	10	1145	181	378	130	71	1941	746	694	965	1895	8145	
Nommarki 1 2 3 4 5 15 15 16 7 8 9 V, Nommarki 1 9 67 6 5 15 115 16 7 8 3 15<		Total	19341	4158	2886	2477	1651	71981	3518	3357	4945	8855	123170	
1 93 01 67 36 15 151 161 36	Diff		-1	2	m	4	5	9	7	80	6	10	Tota	
Weak 2 69 67 6 9 6 213 35 55 16 Meak 4 1 1 5 3 3 5 9 5 16 Meak 4 1 1 5 3 3 5 3 3 2 3	Rotherham	1	86	81	67	26	15	1151	61	78	81	133	1791	
wgwn, Thurcerti 1 12 5 9 7 0 11 8 12 5 9 with 5 4 1 1 6 1 17 1 113 8 12 2 3 with the matrix 5 1 3 11 15 1<	Wath, Swinton, Rawmarsh	2	69	67	9	6	9	223	36	56	16	47	535	
13 4 11 6 -14 7 11 11 15 5 5 9 10 6 14 3 7 1 31 31 34 3 34 3 34 35 34	Maltby, Dinnington, Thurcroft	m	32	ŝ	6	7	0	151	80	12	8	30	263	
old 5 -4 -3 -11 -36 -11 -1 -3 Retringhum 0 190 31 -4 17 -11 34 17	Aughton, Wales	4	11	9	-14	Ŀ-	11	119	S	s	6	20	165	
6 113 317 246 79 151 546 173 137 243 6 113 34 16 9 347 246 37 366 173 137 243 Motingdum 0 173 32 32 31 21 331 0 0 10 193 50 24 33 25 17 133 30 0 0 10 193 50 41 79 0 334 104 39 334 104 39 334 104 39 334 104 395 104 334 104 395 104 334 104 395 104 334 104 334 104 395 104 104 334 104 105 104 334 104 105 104 104 105 104 104 105 104 104 104 104 104 <td>Rotherham rural</td> <td>5</td> <td>4</td> <td>3</td> <td>-1</td> <td>3</td> <td>-11</td> <td>36</td> <td>1</td> <td>-1</td> <td>3</td> <td>-2</td> <td>28</td>	Rotherham rural	5	4	3	-1	3	-11	36	1	-1	3	-2	28	
7 113 34 16 9 6 7 6 11 66 1 Refindhum 10 157 34 16 7 6 7 6 7 6 11 1 6 1 Refindhum 10 157 32 32 21 21 21 21 33 31 0 0 1	Sheffield	9	1849	317	246	179	181	5768	127	137	274	279	9358	
Montinghum B 90 34 18 7 0 83 82 11 1 0 1 Montinghum 10 199 50 34 13 7 0 8 8 11 0 1 Montinghum 10 199 50 44 279 35 10 11 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 <	Barnsley	~	113	34	16	6	9	82	4	111	8	101	537	
Modifighum 0 157 32 32 12 31 31 0 0 Total 261 21 21 21 21 21 23 31 0 0 Total 261 41 279 261 11 269 96 55 1 Vennach 1 1 1 2 2 12 261	Don caster	æ	6	34	18	7	0	58	82	::		64	364	
Iool 199 50 42 26 13 139 53 93 55 Tool 161 151 61 41 29 25 13 139 55 93 55 1 Newmark 1 1 2 3 4 5 6 7 8 96 55 1 stress 1 1 2 3 4 5 6 7 8 96 55 55 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56	Chesterfield / Nottingham	6	157	32	53	21	21	281	31	0	0	175	771	
Total 764 761 <th 761<="" <="" td=""><td>Rest of Model</td><td>10</td><td>199</td><td>50</td><td>42</td><td>26</td><td>17</td><td>159</td><td>85</td><td>98</td><td>85</td><td>187</td><td>948</td></th>	<td>Rest of Model</td> <td>10</td> <td>199</td> <td>50</td> <td>42</td> <td>26</td> <td>17</td> <td>159</td> <td>85</td> <td>98</td> <td>85</td> <td>187</td> <td>948</td>	Rest of Model	10	199	50	42	26	17	159	85	98	85	187	948
Three 1 2 3 4 5 6 7 8 9 Three 1 1.5 95 1.96 2.06 3.94 2.15 1.95 3.94 2.15 1.96 3.94 Constraint 1 1 1.5 95 1.96 2.06 3.94 2.15 1.75 96 Constraint 1 1.5 5.6 1.96 3.94 3.15 1.75 2.96 95 3.95 1.95 3.95 1.95 3.96 1.95 3.95 1.95 3.96 1.75 3.96 1.75 3.96 1.75 3.96 1.75 3.96 1.75 3.96 1.75 3.96 1.75 3.96 1.75 3.96 1.75 3.96 3.96 3.75 1.96 3.96 3.75 1.96 3.96 3.75 1.96 3.96 3.75 3.96 3.96 3.75 3.96 3.75 3.96 3.75 3.96 3.75 3		Total	2615	619	441	279	245	8024	440	507	555	1034	14761	
Annu 1 1% 9% 10% 5% 4% 1	%Diff		-	6	e	4	5	9	4	8	6	10	Total	
atmatch 2 95 96 305 116 305 135 305 <td>Botherham</td> <td></td> <td>1%</td> <td>7%6</td> <td>19%</td> <td>10%</td> <td>50%</td> <td>34%</td> <td>21%</td> <td>17%</td> <td>46%</td> <td>22%</td> <td>11%</td>	Botherham		1%	7%6	19%	10%	50%	34%	21%	17%	46%	22%	11%	
On, Thurcenft I % <	Wath. Swinton. Rawmarsh	. 0	2%	2%	6%	30%	14%	39%	%6	15%	175%	26%	12%	
i 1 25 444 65 15 81 121 125 26 184 6 135 145 55 55 55 55 55 3	Maltby, Dinnington, Thurcroft	m	9%9	-3%	2%	8%	%0	33%	17%	25%	5%	10%	10%	
5 -15x 13x 55x 13x	Aughton, Wales	4	2%	14%	9%	-1%	8%	12%	12%	29%	14%	17%	6%	
6 81% 12% 34% 75% 13% 25% 23% 23% 23% 23% 23% 23% 23% 23% 15%	Rotherham rural	S	-1%	4%	-1%	3%	-5%	6%	3%	%0	3%	-1%	1%	
1 18% 10% 20%	Sheffield	9	81%	125%	82%	34%	75%	11%	16%	23%	12%	14%	15%	
8 17% 11% 14% 32% 0% 12% 15% 23% 16% 7 Notingham 9 76% 51% 15% 15% 15% 17% 28% 28% 38% 12% 30% 24% 25% 15% 10% 21% 36% 12% 26% 26% 10% 21% 24% 26% 26% 26% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25	Barnsley	~	18%	10%	50%	37%	13%	10%	20%	20%	15%	12%	14%	
Nottingham 9 76% 51% 15% 16% 17% 8% 12% 28% 8% : 0 21% 38% 12% 25% 30% 9% 13% 16% 10% :	Don caster	80	17%	11%	14%	32%	%	12%	15%	23%	16%	14%	14%	
10 21% 38% 12% 25% 30% 9% 13% 16% 10%	Chesterfield / Nottingham	6	76%	51%	15%	16%	17%	8%	12%	28%	8%	13%	13%	
	Rest of Model	10	21%	38%	12%	25%	30%	86	13%	16%	10%	11%	12%	

Car Origin Distribution

Origin %		1		3	4	5	9	7	8	6	10	Total	Des	Destinatio
Rotherham	1	58%		2%	2%	2%	21%	2%	3%	1%	4%	100%	Rot	Rotherhan
Wath, Swinton, Rawmarsh	2	33%	28%	2%	1%	1%	13%	%6	8%	%0	4%	100%	Wat	Wath, Swii
Maltby, Dinnington, Thurcroft	e	21%		18%	3%	4%	17%	2%	2%	14%	11%	100%	Mal	Maltby, Di
Aughton, Wales	4	16%	1%	7%	31%	4%	32%	2%	1%	2%	4%	100%	Aug	Aughton, N
Rotherham rural	5	23%		7%	5%	10%	28%	2%	8%	5%	%6	100%	Rot	totherhan
Sheffield	9	4%	%0	%0	1%	%0	85%	1%	1%	4%	3%	100%	She	Sheffield
Barnsley	7	17%		1%	1%	1%	22%	%0	15%	11%	22%	100%	Ban	Barnsley
Doncaster	80	20%	1	5%	1%	6%	18%	20%	2%	%0	17%	100%	Don	Doncaster
Chesterfield / Nottingham	6	3%		6%	2%	2%	58%	4%	%0	%0	23%	100%	Che	Chesterfiel
Rest of Model	10	13%	2%	5%	1%	1%	25%	%6	8%	12%	24%	100%	Res	test of Mc
	Total	15%		2%	2%	1%	59%	3%	3%	4%	7%	100%		
2011-00			e	e		,	·	r	¢	¢		1. 19 A		
Origin %				'n	4	ŝ	٥	1	8	6	10	Total	Des	Destinatio
Rotherham	1	53%		2%	2%	2%	26%	2%	3%	1%	4%	100%	Rot	totherhan
Wath, Swinton, Rawmarsh	2	31%	2	2%	1%	1%	16%	9%	9%6	%	5%	100%	Wat	Vath, Swii
Maltby, Dinnington, Thurcroft	m	21%		17%	3%	4%	21%	2%	2%	13%	11%	100%	Mal	Maltby, Di
Aughton, Wales	4	16%	1%	%9	29%	4%	34%	2%	1%	2%	4%	100%	Aug	Vughton, V
Rotherham rural	5	22%		7%	5%	10%	29%	2%	%8	%9	8%	100%	Rot	Rotherham
Sheffield	9	6%		1%	1%	1%	82%	1%	1%	4%	3%	100%	She	Sheffield
Barnsley	7	17%		1%	1%	1%	21%	1%	16%	12%	22%	100%	Ban	3amsley
Doncaster	8	20%		5%	1%	5%	18%	20%	2%	%0	17%	100%	Dod	Doncaster
Chesterfield / Nottingham	6	5%		6%	2%	2%	55%	4%	%0	%0	23%	100%	Che	Chesterfiel
Rest of Model	10	14%		5%	2%	1%	24%	%6	%6	12%	23%	100%	Res	test of Mc
	Total	16%	3%	2%	2%	1%	58%	3%	3%	4%	7%	100%		
Diff		1		3	4	5	9	7	8	6	10	Total	Diff	
Rotherham	1	-5%		0%	0%	0%	4%	%0	%0	%0	0%	0%	Rot	Rotherhan
Wath, Swinton, Rawmarsh	2	-2%	1	0%	0%	0%	3%	%0	%0	%0	1%	0%	Wat	Vath, Swii
Maltby, Dinnington, Thurcroft	m	-1%	'	-1%	%0	%	4%	%0	%0	-1%	%	%0	Mal	Maltby, Di
Aughton, Wales	4	%0		-1%	-2%	%0	2%	%0	%0	%0	%0	%0	Aug	Aughton, \
Rotherham rural	5	%o		%0	%0	-1%	1%	%0	%0	%0	%0	%0	Rot	Rotherhan
Sheffield	9	2%		%0	%0	%0	-3%	%0	%0	%0	%0	%0	She	Sheffield
Barnsley	7	1%		%0	%0	%0	-1%	%0	1%	%0	%0	%0	Ban	Barnsley
Doncaster	8	1%		%0	%0	-1%	%0	%0	%0	%0	0%	0%	Don	Doncaster
Chesterfield / Nottingham	6	2%		%0	%0	%0	-2%	%0	%0	%0	%0	%0	Che	Chesterfiel
Rest of Model	10	1%	%0 '	%0	%0	%0	-1%	%0	%0	%0	%0	%0	Res	test of Mo
	Total	860		%0	%0	%0	-1%	%0	%0	%0	%0	%0		
											Ì			Ì

Car Destination Distribution

Destination %		-	2	'n	4	ŝ	ø	-	×	თ	10	otal
Rotherham		55%	25%	14%	12%	20%	5%	10%	16%	4%	8%	15%
Wath, Swinton, Rawmarsh 2		9%6	35%	4%	1%	3%	1%	13%	13%	0%	2%	4%
Maltby, Dinnington, Thurch		3%	6%	20%	4%	8%	1%	1%	2%	88	4%	2%
Aughton, Wales 2	_	3%	1%	86	42%	9%6	1%	1%	1%	1%	2%	3%
Rotherham rural	5	3%	2%	88	5%	15%	1%	1%	6%	3%	2%	2%
Sheffield 6	9	14%	7%	12%	24%	17%	81%	26%	21%	53%	26%	56%
Barnsley 7	7	4%	10%	1%	1%	3%	1%	1%	20%	10%	10%	3%
Boncaster 8	80	3%	8%	5%	1%	12%	1%	17%	2%	%0	6%	2%
Chesterfield / Nottingham 9	6	1%	2%	14%	6%	9%	5%	8%	%0	0%	18%	5%
Rest of Model 1	10	6%	4%	14%	5%	4%	36	21%	21%	20%	22%	7%
	Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Destination %		1	2	с	4	5	9	7	80	6	10	Total
Rotherham 1		48%	23%	14%	11%	18%	6%	10%	16%	5%	8%	14%
Wath, Swinton, Rawmarsh		8%	32%	4%	2%	3%	1%	12%	13%	%0	3%	4%
Maltby, Dinnington, Thurch		3%	5%	17%	4%	7%	1%	1%	2%	88	4%	2%
Aughton, Wales	_	3%	1%	Ř	37%	8%	1%	1%	1%	2%	2%	3%
Rotherham rural	5	2%	2%	28	4%	12%	1%	1%	5%	2%	2%	2%
Sheffield 6		21%	14%	19%	29%	26%	80%	26%	22%	53%	26%	57%
Barnsley	7	4%	9%	2%	1%	3%	1%	1%	20%	10%	10%	3%
Doncaster 8	8	3%	8%	5%	1%	10%	1%	18%	2%	0%	6%	2%
Chesterfield / Nottingham 9	_	2%	2%	14%	6%	8%	5%	8%	860	%0	17%	5%
Rest of Model 1	10	6%	4%	13%	5%	4%	3%	21%	21%	20%	21%	7%
	Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
#		1	2	e	4	2	9	7	8	6	10	Total
3otherham 1		-7%	-2%	%0	0%	-2%	1%	1%	%0	1%	1%	0%
Vath, Swinton, Rawmarsh 2		-1%	-4%	%	%	%0	%0	-1%	860	%0	860	860
Maltby, Dinnington, Thurcr 3		%0	-1%	-3%	%	-1%	%0	%	%0	-1%	%0	%0
Aughton, Wales		%0	%	-2%	-5%	-1%	%0	%	%	%	%	80
Rotherham rural	5	860	%	-1%	%	-3%	%0	%	-1%	%0	860	860
Sheffield 6		8%	7%	7%	4%	8%	-1%	%0	1%	%0	%0	1%
Barnsley	7	%0	-1%	%0	%	%	%0	%	%	%	%	80
	80	9%0	%0	%0	%0	-2%	0%	%0	86	%0	%	%0
Chesterfield / Nottingham	6	1%	1%	%0	%0	%0	%	%0	%0	%	%0	%0
Rest of Model 1	10	%0	1%	-1%	1%	%	%0	0%	860	-1%	0%	0%
	Takal	100										

Appendix C Sectored Trip Demand Matrices - Evening Peak Hour

Trips	
Ŀ	

2011 Base						1						
Deskasham		1	7	'n	4	Ŷ	٥	1	8	P.	10	lotal
III PUI JAIN ON	7	8894	1371	585	410	483	3143	734	954	381	722	17678
Wath, Swinton, Rawmarsh		1415	1071	198	43	6	345	352	395	93	174	4176
Maltby, Dinnington, Thurcroft		395	152	717	184	377	402	29	135	82	303	2777
Aughton, Wales	4	281	23	269	663	110	705	53	13	89	11	2282
Rotherham rural	ŝ	365	146	56	172	142	156	33	141	32	108	1351
Sheffield	9	3749	566	537	1055	653	53682	1263	914	3268	2172	67859
Barnsley	4	308	525	97	56	30	913	17	439	352	573	3311
Doncaster	80	581	337	65	18	78	646	413	75	0	211	2425
Chesterfield / Nottingham	6	171	47	118	119	91	2972	562	23	0	1326	5428
Rest of Model	10	677	196	317	88	74	2345	881	268	1401	2054	8303
	Total	16836	4433	2958	2809	2128	602309	4338	3358	5701	7721	115590
2028 DoMin (unconstrained)		1	2	3	4	S	9	7	8	6	10	Total
Rotherham	-1	9072	1455	631	433	485	4947	856	1075	530	913	20396
Wath, Swinton, Rawmarsh	2	1474	1165	196	50	91	209	407	444	127	230	4893
Maltby, Dinnington, Thurcroft	m	475	157	717	185	352	694	47	159	123	358	3268
Aughton, Wales		309	31	275	664	115	848	62	17	101	96	2520
Rotherham rural	s	379	143	99	176	137	303	38	139	47	122	1549
Sheffield	9	2097	832	742	1183	737	59576	1432	1047	3561	2394	76602
Barnslev	7	381	559	108	63	33	1060	20	525	407	647	3804
Doncaster	00	676	390	76	22	82	767	494	96	0	249	2850
Chesterfield / Nottingham	6	280	12	147	130	100	3284	641	27	0	1477	6158
Rest of Model	10	839	250	354	107	8	2650	266	315	1567	2276	9439
	Total	18982	5054	3313	3014	2216	74837	4995	3842	6464	8764	131480
						İ					l	
Diff		1	2	e	4	\$	9	7	8	6	10	Total
Rotherham	1	178	84	46	23	1	1804	122	120	149	191	2719
Wath, Swinton, Rawmarsh	2	59	94	-2	7	-	364	56	48	33	56	716
Maltby, Dinnington, Thurcroft		67	ŝ	0	-1	-25	292	17	24	40	56	491
Aughton, Wales	4	28	80	7	-1	ŝ	143	10	s	12	19	238
Rotherham rural	2	15	4	10	5	ŝ	147	4	-2	14	14	198
Sheffield	9	1348	267	205	128	84	5895	169	133	292	222	8743
Barnsley	-	73	34	11	7	m	147	4	85	55	74	494
Doncaster	œ	95	5	11	4	ŝ	120	80	18	0	38	425
Chesterfield / Nottingham	თ	109	24	30	=	80	312	79	4	0	152	730
Rest of Model	10	162	54	37	19	10	304	115	47	166	222	1136
	Total	2146	621	355	205	88	9528	657	483	763	1043	15890
%Diff		-	6	e	4	c.	ę	7	8	6	10	Total
Rotherham		- 2%	969	8%	5%	80	2472	17%	13%	39%	26%	15%
Wath. Swinton. Rawmarsh		4%	%	-1%	16%	1%	105%	16%	12%	36%	32%	17%
Maltby, Dinnington, Thurcroft	m	20%	3%	%0	1%	-7%	73%	59%	18%	49%	18%	18%
Aughton, Wales	4	10%	35%	3%	%0	5%	20%	19%	39%	14%	25%	10%
Rotherham rural	ŝ	4%	-2%	18%	3%	-4%	94%	13%	-1%	44%	13%	15%
Sheffield	9	36%	47%	38%	12%	13%	11%	13%	15%	%6	10%	13%
Barnsley	4	24%	%L	11%	12%	11%	16%	22%	19%	16%	13%	15%
Doncaster	80	16%	16%	16%	23%	6%	19%	19%	24%	25%	18%	18%
Chesterfield / Nottingham	6	63%	52%	25%	10%	8%6	10%	14%	19%	6%	11%	13%
Rest of Model	10	24%	28%	12%	21%	13%	13%	13%	18%	12%	11%	14%
	Total	13%	14%	12%	%	4%	15%	15%	14%	13%	14%	14%

Car Origin Distribution Origin %

Origin %		-1	2	'n	4	5	9	2	80	6	10	Total	Destination %
Rotherham 1		20%	%8	3%	2%	3%	18%	4%	5%	2%	4%	100%	Rotherham
Wath, Swinton, Rawmarsh 2		34%	26%	5%	1%	2%	8%	8%	%6	2%	4%	100%	Wath, Swinton, Rawmars
Maltby, Dinnington, Thurcrd3		14%	5%	26%	2%	14%	14%	1%	5%	3%	11%	100%	Maltby, Dinnington, Thur
Aughton, Wales 4		12%	1%	12%	29%	5%	31%	2%	1%	4%	3%	100%	Aughton, Wales
Rotherham rural 5		27%	11%	4%	13%	11%	12%	2%	10%	2%	8%	100%	Rotherham rural
Sheffield 6		%9	1%	1%	2%	1%	%61	2%	1%	5%	%E	100%	Sheffield
Barnsley 7		%6	16%	%E	2%	1%	28%	1%	13%	11%	17%	100%	Barnsley
Doncaster 8		24%	14%	%E	1%	3%E	27%	17%	%E	%0	%6	100%	Doncaster
Chesterfield / Nottingham 9		3%	1%	2%	2%	2%	55%	10%	%0	%0	24%	100%	Chesterfield / Nottinghar 9
Rest of Model 10		8%	2%	4%	1%	1%	28%	11%	3%	17%	25%	100%	Rest of Model
To	Total	15%	4%	3%	2%	2%	57%	4%	3%	5%	7%	100%	
Origin %		1	2	3	4	s	9	7	80	6	10	Total	Destination %
Rotherham 1		44%	×	3%	2%	2%	24%	4%	5%	3%	4%	100%	Rotherham
Wath, Swinton, Rawmarsh 2		30%	24%	4%	1%	2%	14%	8%	%6	3%	5%	100%	Wath, Swinton, Rawmars
Maltby, Dinnington, Thurcrd3		15%	5%	22%	9%9	11%	21%	1%	5%	4%	11%	100%	Maltby, Dinnington, Thur
Aughton, Wales 4		12%	1%	11%	26%	5%	34%	2%	1%	4%	4%	100%	Aughton, Wales
Rotherham rural 5		24%	%6	4%	11%	%6	20%	2%	%6	3%	8%	100%	Rotherham rural
Sheffield 6		7%	1%	1%	2%	1%	78%	2%	1%	5%	3%	100%	Sheffield
Barnsley 7		10%	15%	3%	2%	1%	28%	1%	14%	11%	17%	100%	Barnsley
Doncaster 8		24%	14%	3%	1%	3%	27%	17%	3%	%0	9%6	100%	Doncaster
Chesterfield / Nottingham 9		5%	1%	2%	2%	2%	53%	10%	0%	0%	24%	100%	Chesterfield / Nottinghar 9
Rest of Model 10		9%	3%	4%	1%	1%	28%	11%	3%	17%	24%	100%	Rest of Model
To	Total	14%	4%	3%	2%	2%	57%	4%	3%	5%	2%	100%	
Diff		1	2	e	4	S	9	7	~	6	10	Total	Diff
Rotherham 1		-6%	-1%	%0	%0	%0	6%	%0	%0	%0	%0	%0	Rotherham
Wath, Swinton, Rawmarsh 2		-4%	-2%	-1%	%0	%	6%	%0	%0	%0	1%	9%0	Wath, Swinton, Rawmars
Maltby, Dinnington, Thurcrd3		%0	-1%	-4%	-1%	-3%	%L	%0	%0	1%	%0	%0	Maltby, Dinnington, Thur
Aughton, Wales 4		%0	%0	-1%	-3%	%0	3%	%0	%0	%0	%0	%0	Aughton, Wales
Rotherham rural 5		-3%	-2%	0%	-1%	-2%	8%	0%	-1%	1%	0%	0%	Rotherham rural
Sheffield 6		1%	%0	0%	%0	0%	-1%	0%	0%	0%	0%	0%	Sheffield
Barnsley 7		1%	-1%	0%	%0	0%	0%	0%	1%	0%	0%	0%	Barnsley
Doncaster 8		0%	%0	0%	%0	0%	0%	0%	0%	%0	0%	0%	Doncaster
Chesterfield / Nottingham 9		1%	%0	0%	0%	0%	-1%	0%	0%	9%0	0%	0%	Chesterfield / Nottinghar 9
Rest of Model 10		1%	%0	0%	0%	0%	9%0	0%	0%	0%	-1%	0%	Rest of Model
		700	100	100	100	0.00	100	100	100				

Car Destination Distribution

Destination %		-	2	'n	4	ŝ	9	7	80	6	10	Total
Rotherham	1	53%	31%	20%	15%	23%	5%	17%	28%	7%	%6	15%
Vath, Swinton, Rawmars2	2	8%	24%	7%	2%	4%	1%	8%	12%	2%	2%	4%
Maltby, Dinnington, Thur 3	3	2%	3%	24%	%L	18%	1%	1%	4%	1%	4%	2%
Aughton, Wales	4	2%	1%	9%6	24%	5%	1%	1%	%0	2%	1%	2%
Rotherham rural	5	2%	3%	2%	6%	7%	86	1%	4%	1%	1%	1%
sheffield	9	22%	13%	18%	38%	31%	82%	29%	27%	57%	28%	59%
Barnsley	7	2%	12%	3%	2%	1%	1%	%0	13%	6%	%L	3%
Doncaster	8	3%	8%	2%	1%	4%	1%	10%	2%	%0	3%	2%
Chesterfield / Nottinghar	9	1%	1%	4%	4%	4%	5%	13%	1%	0%	17%	5%
Rest of Model	10	4%	4%	11%	3%	3%	4%	20%	8%	25%	27%	7%
	Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Destination %		1	2	3	4	5	9	7	80	6	10	Total
Sotherham	1	48%	29%	19%	14%	22%	7%	17%	28%	8%	10%	16%
Vath, Swinton, Rawmars 2	2	8%	23%	6%	2%	4%	1%	8%	12%	2%	3%	4%
Maltby, Dinnington, Thur 3	в	3%	3%	22%	6%	16%	1%	1%	4%	2%	4%	2%
Aughton, Wales	4	2%	1%	8%	22%	5%	1%	1%	%0	2%	1%	2%
Rotherham rural	5	2%	3%	2%	6%	6%	%0	1%	4%	1%	1%	1%
sheffield	6	27%	16%	22%	39%	33%	80%	29%	27%	55%	27%	58%
Barnsley	7	2%	11%	3%	2%	2%	1%	%0	14%	6%	% K	3%
Doncaster	8	4%	8%	2%	1%	4%	1%	10%	2%	%0	3%	2%
Chesterfield / Nottinghar9	9	1%	1%	4%	4%	4%	4%	13%	1%	%0	17%	5%
Rest of Model	10	4%	5%	11%	4%	4%	4%	20%	8%	24%	26%	7%
	Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Diff		1	2	67	4	5	9	~	8	σ	10	Total
Rotherham	1	-5%	-2%	-1%	0%	-1%	2%	0%	0%	2%	1%	0%
Wath, Swinton, Rawmars2	2	-1%	-1%	-1%	86	%	80	%0	%	%0	%	0%
Maltby, Dinnington, Thurl3	3	%0	0%	-3%	%0	-2%	80	%0	80	%0	%0	80
Aughton, Wales	4	80	%0	-1%	-2%	0%	80	80	80	80	%0	80%
Rotherham rural	5	80	%0	%	0%	%0	%0	%0	-1%	%0	%	960
Sheffield	9	5%	4%	4%	2%	%E	-3%	%0	%0	-2%	-1%	960
Barnsley	7	%0	-1%	80	%0	%0	%0	%0	1%	%0	%0	80
Doncaster	8	80	%0	%0	0%	%0	80	%0	%	%0	%0	0%
Chesterfield / Nottinghar9	6	0%	80	80	80%	80	%0	%	%	%	0%	860
Rest of Model	10	80	1%	%0	0%	%0	80	%0	%	%0	-1%	0%
			0.01	1.0.0		1.0.0	Ì		441		ì	

Appendix D - Network Statistics by Area

Rotherham District

		АМ			IP			РМ	
	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff
Distance (veh-kms)	292,424	340,645	16%	230,940	282,304	22%	301,191	346,712	15%
Time (veh-hrs)	6,897	8,629	25%	5,373	6,643	24%	7,702	9,934	29%
Total Delay (veh-hrs)	987	1,760	78%	620	955	54%	1,502	2,890	92%
Delay per veh-km (secs)	12	19	53%	10	12	26%	18	30	67%
Average Speed (kph)	42	39	-7%	43	42	-1%	39	35	-11%

Rotherham Urban Area

		АМ			IP			РМ	
	2011 Base	2028	%Diff	2011 Base	2028	%Diff	2011 Base	2028	%Diff
		DM			DM			DM	
Distance (veh-kms)	141,435	162,646	15%	112,158	133,622	19%	142,338	159,989	12%
Time (veh-hrs)	3,265	4,114	26%	2,575	3,188	24%	3,633	4,353	20%
Total Delay (veh-hrs)	412	784	90%	252	427	69%	668	1,030	54%
Delay per veh-km (secs)	10	17	65%	8	11	42%	17	23	37%
Average Speed (kph)	43	40	-9%	44	42	-4%	39	37	-6%

Wath, Swinton, Rawmarsh

		АМ			IP			РМ	
	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff
Distance (veh-kms)	35,403	41,352	17%	26,173	31,542	21%	36,269	42,339	17%
Time (veh-hrs)	921	1,160	26%	682	812	19%	972	1,143	18%
Total Delay (veh-hrs)	116	226	94%	64	97	52%	119	186	56%
Delay per veh-km (secs)	12	20	66%	9	11	26%	12	16	33%
Average Speed (kph)	38	36	-7%	38	39	1%	37	37	-1%

Maltby, Dinnington, Thurcroft

		AM			IP			РМ		
	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff	
Distance (veh-kms)	41,660	49,933	20%	34,187	41,494	21%	43,376	51,610	19%	
Time (veh-hrs)	777	932	20%	624	763	22%	849	1,059	25%	
Total Delay (veh-hrs)	64	87	37%	45	69	55%	103	176	70%	
Delay per veh-km (secs)	5	6	15%	5	6	28%	9	12	43%	
Average Speed (kph)	54	54	0%	55	54	-1%	51	49	-5%	

Aughton, Wales

	AM				IP		PM		
	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff
Distance (veh-kms)	15,622	18,488	18%	10,887	15,161	39%	16,765	20,484	22%
Time (veh-hrs)	383	498	30%	252	357	42%	408	599	47%
Total Delay (veh-hrs)	45	92	104%	15	30	105%	46	146	219%
Delay per veh-km (secs)	10	18	72%	5	7	47%	10	26	161%
Average Speed (kph)	41	37	-9%	43	42	-2%	41	34	-17%

Rotherham rural

	AM				IP			PM		
	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff	
Distance (veh-kms)	43,826	52,350	19%	34,388	45,308	32%	48,183	57,379	19%	
Time (veh-hrs)	880	1,105	26%	660	834	26%	962	1,216	26%	
Total Delay (veh-hrs)	63	165	164%	25	38	49%	76	194	154%	
Delay per veh-km (secs)	5	11	121%	3	3	13%	6	12	114%	
Average Speed (kph)	50	47	-5%	52	54	4%	50	47	-6%	

Rotherham Town Centre

		AM			IP		PM		
	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff	2011 Base	2028 DM	%Diff
Distance (veh-kms)	14,477	15,810	9%	13,146	14,957	14%	14,260	15,165	6%
Time (veh-hrs)	671	670	0%	580	632	9%	877	1,087	24%
Total Delay (veh-hrs)	287	261	-9%	220	245	11%	489	696	42%
Delay per veh-km (secs)	71	59	-17%	60	59	-2%	124	165	34%
Average Speed (kph)	22	24	9%	23	24	4%	16	14	-14%

Appendix D - Network Statistics by Area

Rotherham District

	АМ				IP			PM		
	2028	2028	%Diff	2028	2028	%Diff	2028	2028	%Diff	
	DM	Mitigation	700111	DM	Mitigation	70 D III	DM	Mitigation	/0 D III	
Distance (veh-kms)	340,645	339,862	0%	282,304	281,416	0%	346,712	349,283	1%	
Time (veh-hrs)	8,629	8,413	-3%	6,643	6,620	0%	9,934	9,434	-5%	
Total Delay (veh-hrs)	1,760	1,572	-11%	955	959	0%	2,890	2,362	-18%	
Delay per veh-km (secs)	19	17	-10%	12	12	1%	30	24	-19%	
Average Speed (kph)	39	40	2%	42	43	0%	35	37	6%	

Rotherham Urban Area

	АМ			IP			РМ		
	2028	2028	%Diff	2028	2028	0/ D:ff	2028	2028	%Diff
	DM	Mitigation	%DIII	DM	Mitigation	%Diff	DM	Mitigation	%DIII
Distance (veh-kms)	162,646	162,975	0%	133,622	133,538	0%	159,989	163,343	2%
Time (veh-hrs)	4,114	4,079	-1%	3,188	3,217	1%	4,353	4,335	0%
Total Delay (veh-hrs)	784	742	-5%	427	456	7%	1,030	941	-9%
Delay per veh-km (secs)	17	16	-5%	11	12	7%	23	21	-10%
Average Speed (kph)	40	40	1%	42	42	-1%	37	38	3%

Wath, Swinton, Rawmarsh

	AM			IP			PM		
	2028 DM	2028 Mitigation	%Diff	2028 DM	2028 Mitigation	%Diff	2028 DM	2028 Mitigation	%Diff
Distance (veh-kms)	41,352	40,763	-1%	31,542	30,538	-3%		41,437	-2%
Time (veh-hrs)	1,160	1,135	-2%		787	-3%		1,115	-2%
Total Delay (veh-hrs)	226	214	-5%	97	93	-4%	186	178	-4%
Delay per veh-km (secs)	20	19	-4%	11	11	0%	16	15	-2%
Average Speed (kph)	36	36	1%	39	39	0%	37	37	0%

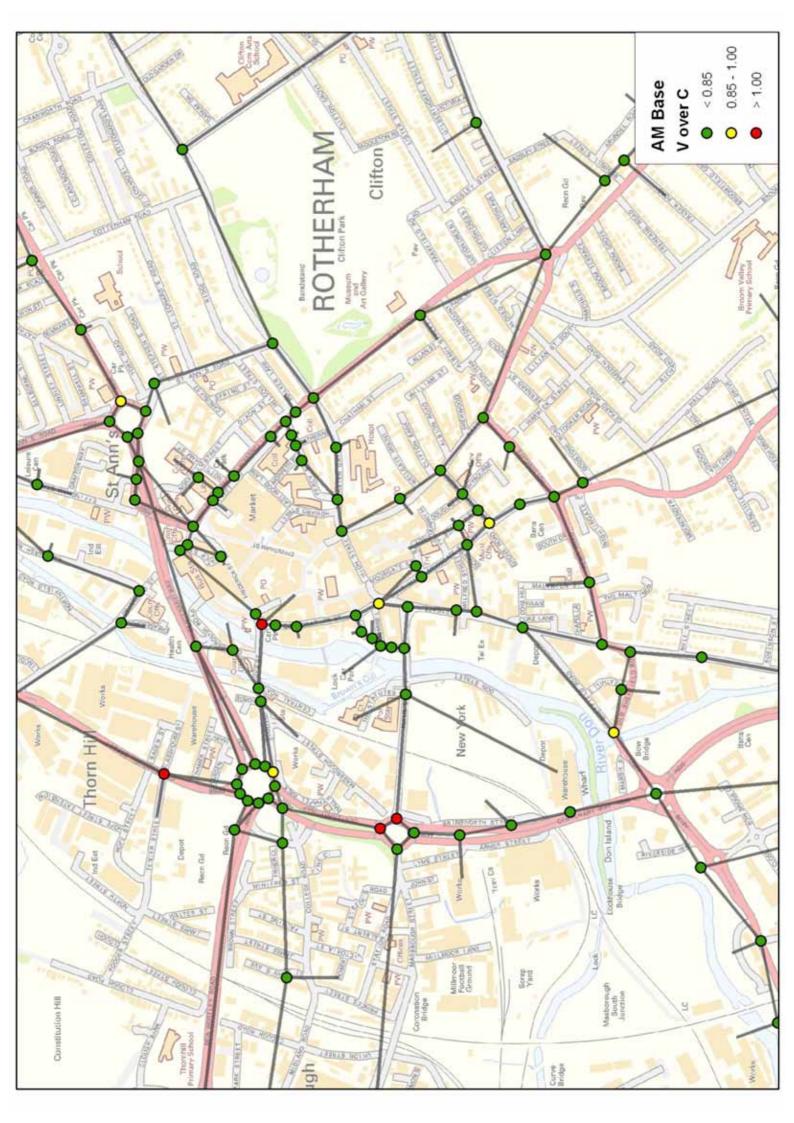
Maltby, Dinnington, Thurcroft

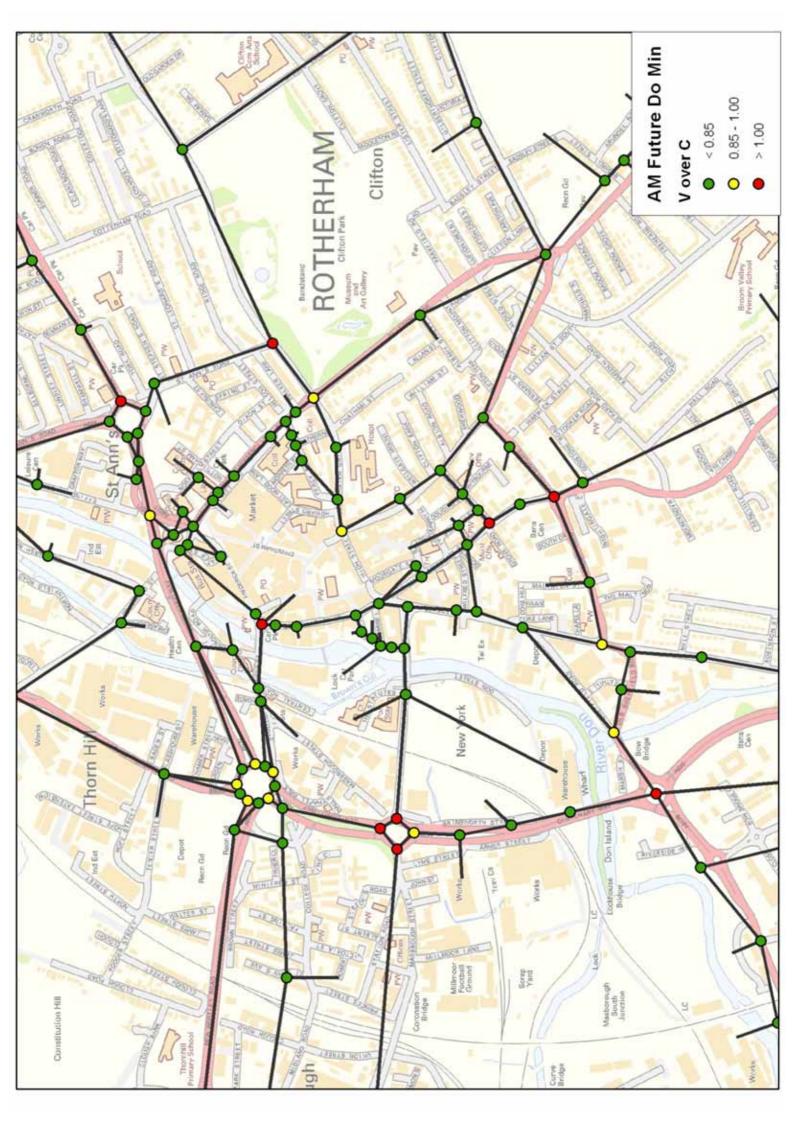
	AM			IP			PM		
	2028 DM	2028 Mitigation	%Diff	2028 DM	2028 Mitigation	%Diff	2028 DM	2028 Mitigation	%Diff
Distance (veh-kms)	49,933	49,913	0%	41,494	41,753	1%	51,610	51,154	-1%
Time (veh-hrs)	932	927	-1%	763	765	0%	1,059	1,046	-1%
Total Delay (veh-hrs)	87	86	-2%	69	70	0%	176	175	-1%
Delay per veh-km (secs)	6	6	-2%	6	6	0%	12	12	0%
Average Speed (kph)	54	54	0%	54	55	0%	49	49	0%

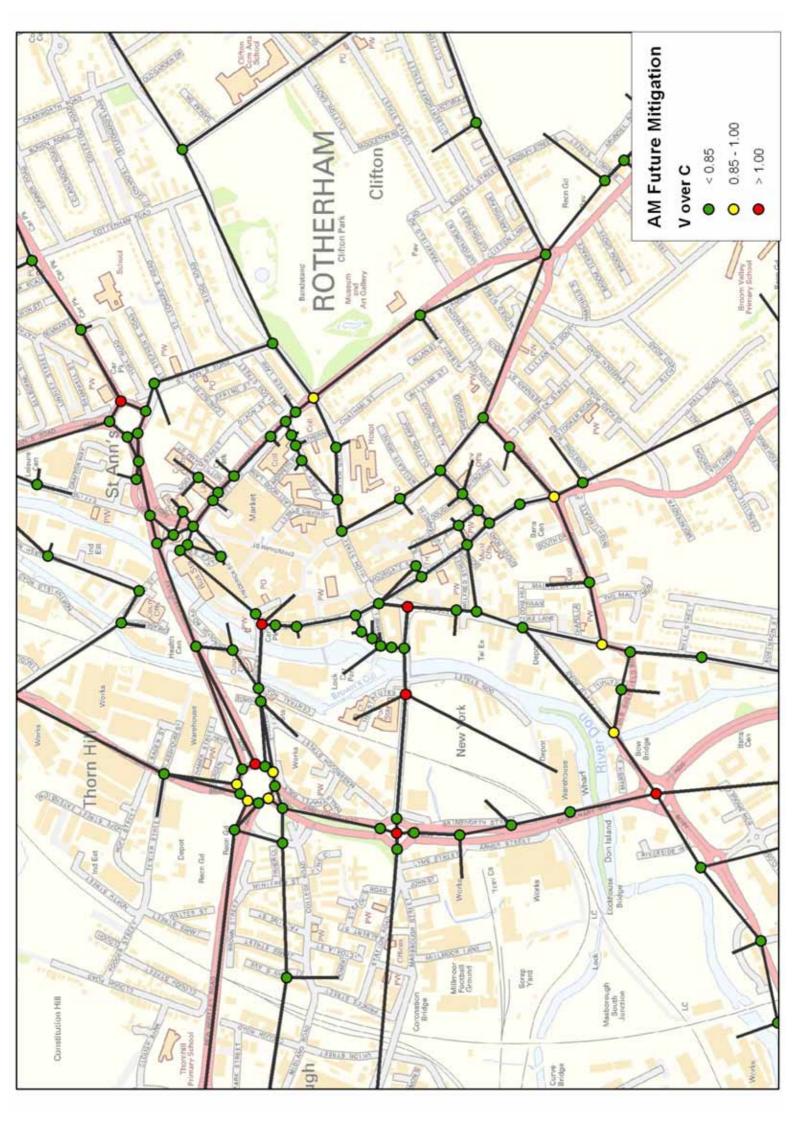
Aughton, Wales

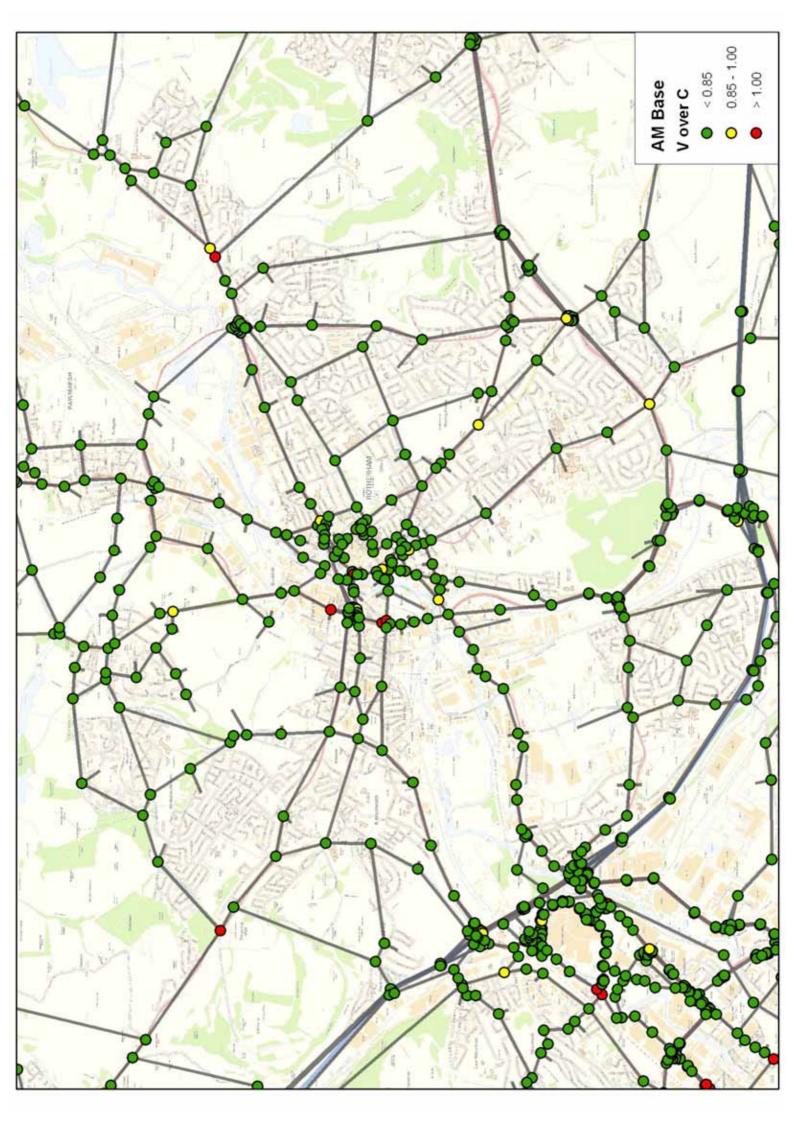
		AM			IP			РМ		
	2028	2028	%Diff	2028	2028	%Diff	2028	2028	%Diff	
	DM	Mitigation	%DIII	DM	Mitigation	%DIII	DM	Mitigation	%Diii	
Distance (veh-kms)	18,488	18,502	0%	15,161	15,153	0%	20,484	20,682	1%	
Time (veh-hrs)	498	500	0%	357	356	0%	599	602	0%	
Total Delay (veh-hrs)	92	94	2%	30	30	-1%	146	145	0%	
Delay per veh-km (secs)	18	18	2%	7	7	-1%	26	25	-1%	
Average Speed (kph)	37	37	0%	42	43	0%	34	34	1%	

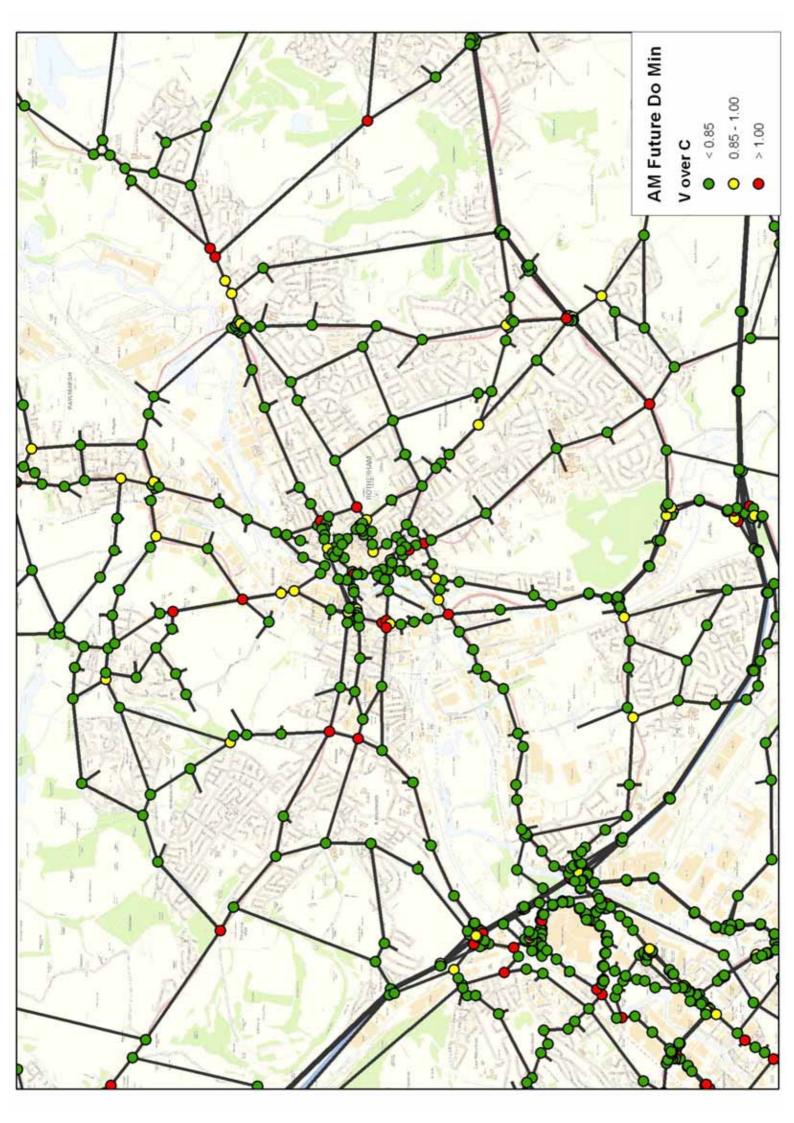
Rotherham rural

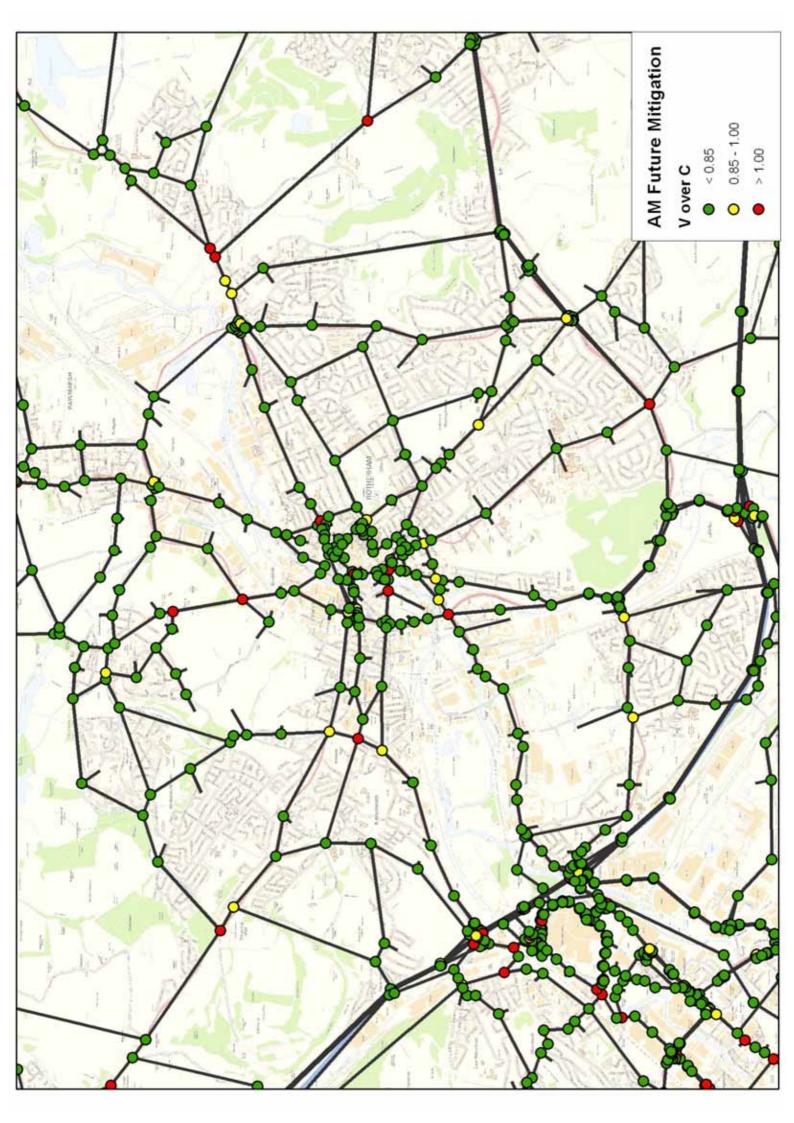

		AM			IP		PM			
	2028 DM	2028 Mitigation	%Diff	2028 DM	2028 Mitigation	%Diff	2028 DM	2028 Mitigation	%Diff	
Distance (veh-kms)	52,350	51,665	-1%	45,308	45,238	0%	57,379	57,272	0%	
Time (veh-hrs)	1,105	1,090	-1%	834	829	-1%	1,216	1,216	0%	
Total Delay (veh-hrs)	165	169	2%	38	39	4%	194	200	3%	
Delay per veh-km (secs)	11	12	4%	3	3	4%	12	13	4%	
Average Speed (kph)	47	47	0%	54	55	0%	47	47	0%	

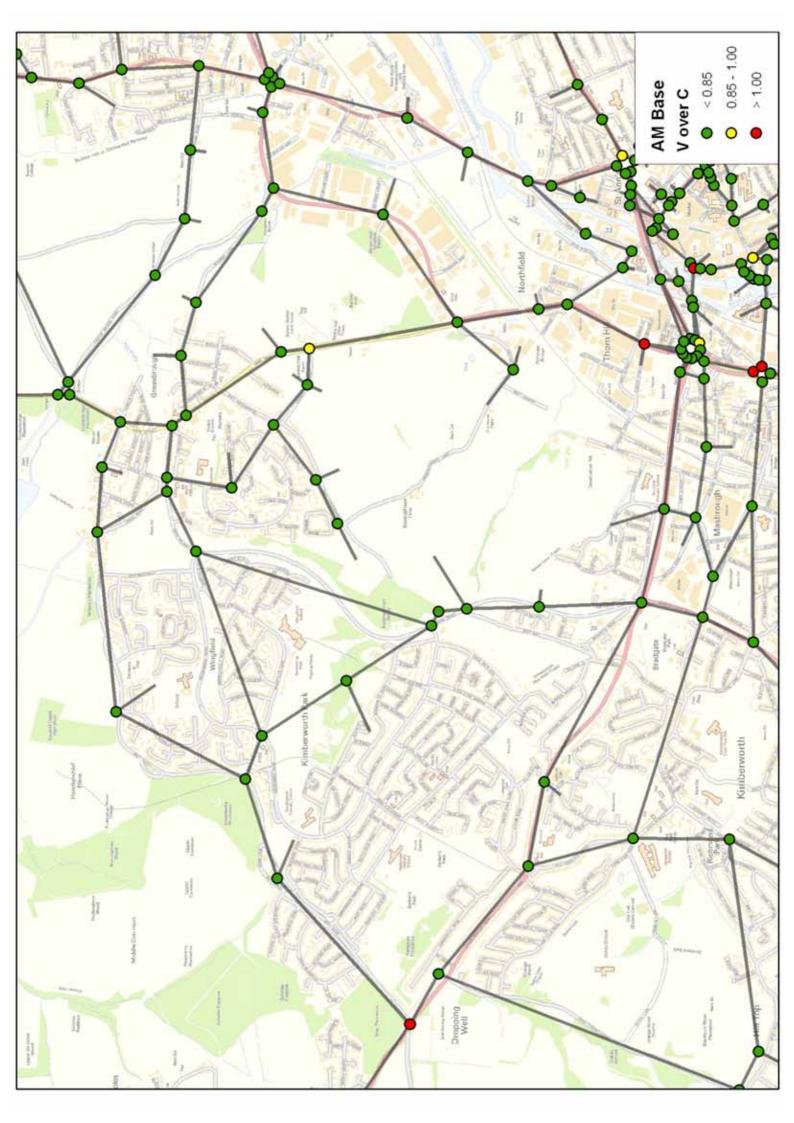

Rotherham Town Centre

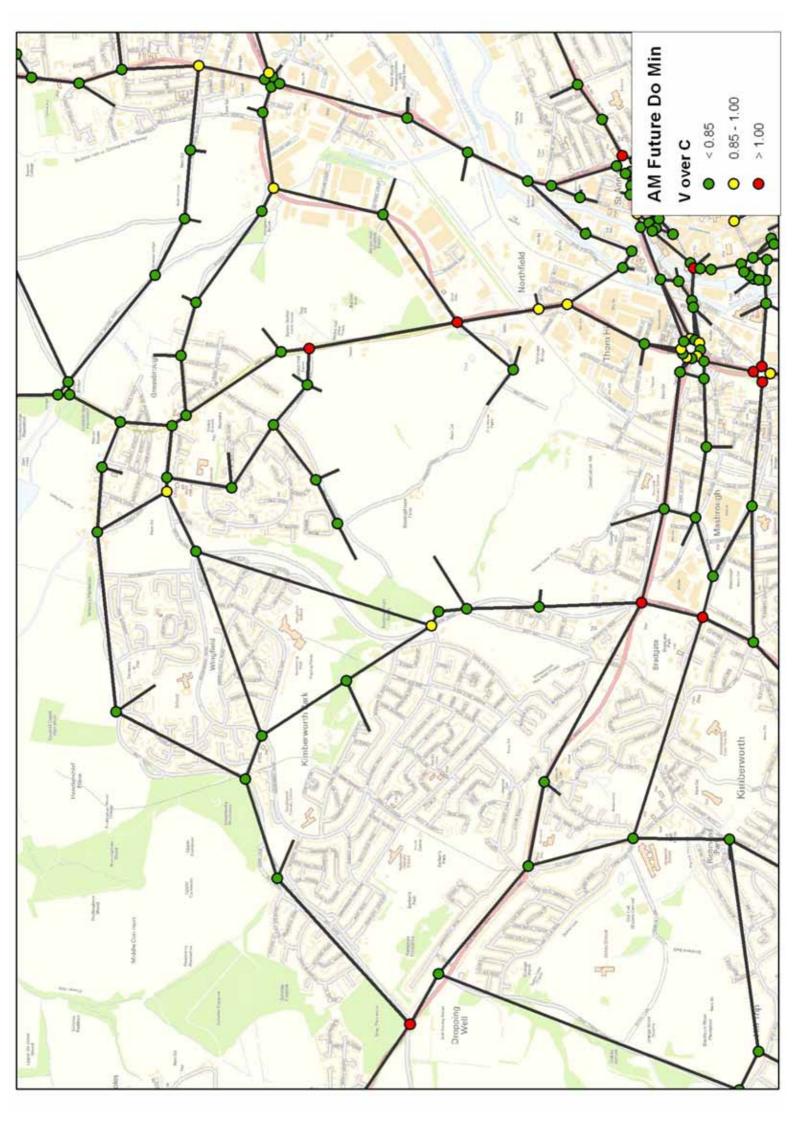

	АМ			IP			PM		
	2028	2028	%Diff	2028	2028	%Diff	2028	2028	%Diff
	DM	Mitigation	%DIII	DM	Mitigation	%DIII	DM	Mitigation	%DIII
Distance (veh-kms)	15,876	16,044	1%	15,177	15,196	0%	14,911	15,396	3%
Time (veh-hrs)	819	680	-17%	690	665	-4%	1,564	1,120	-28%
Total Delay (veh-hrs)	406	267	-34%	294	271	-8%	1,159	723	-38%
Delay per veh-km (secs)	92	60	-35%	70	64	-8%	280	169	-40%
Average Speed (kph)	19	24	22%	22	23	4%	10	14	44%

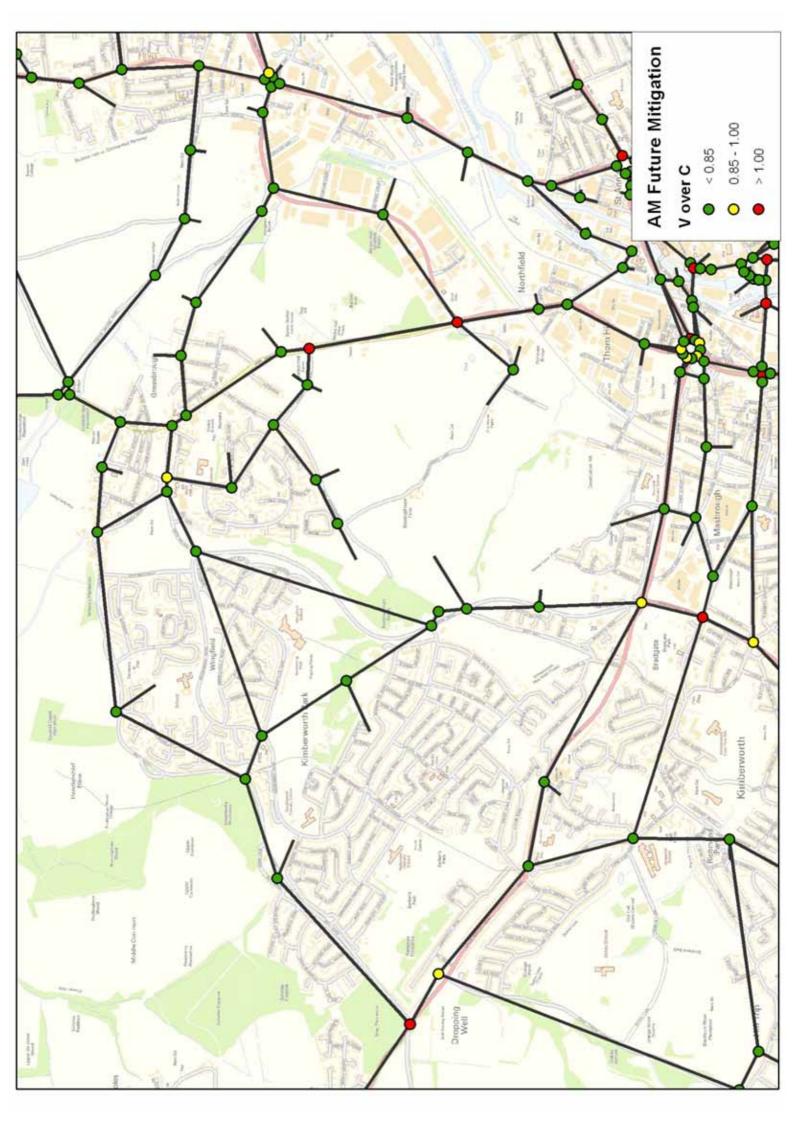

Appendix E: Junction Performance Plots

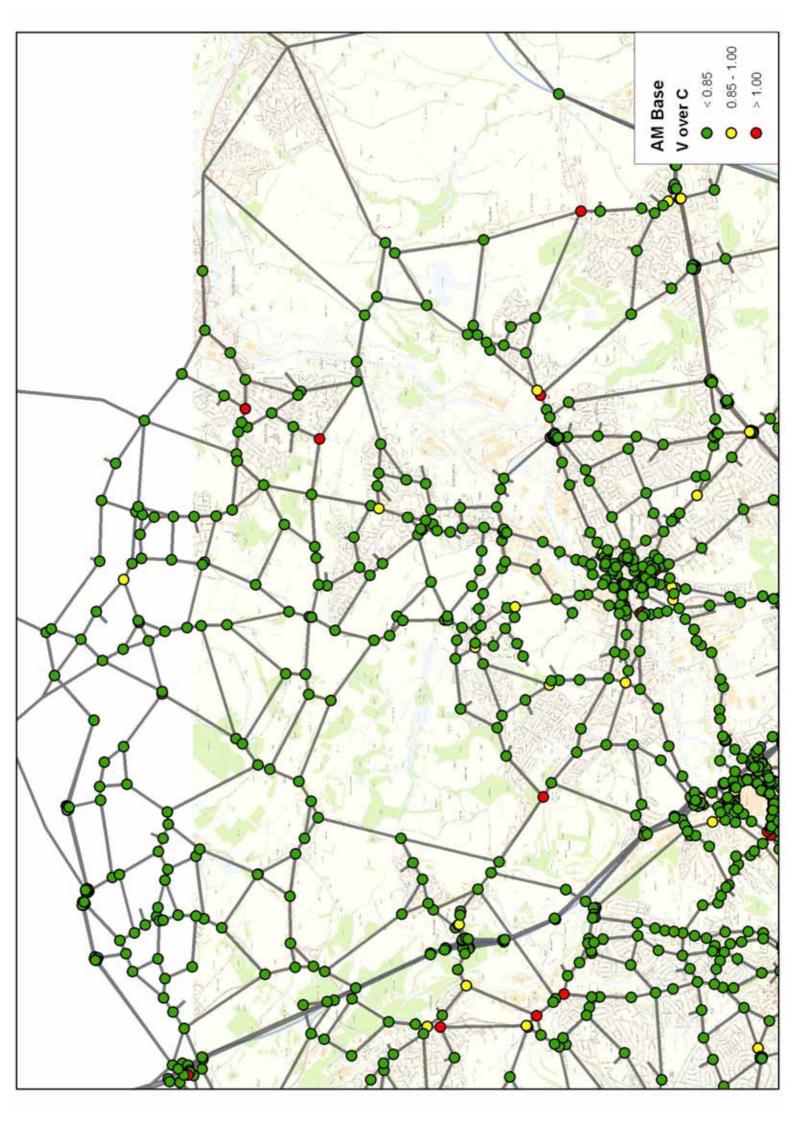

Morning Peak Plots

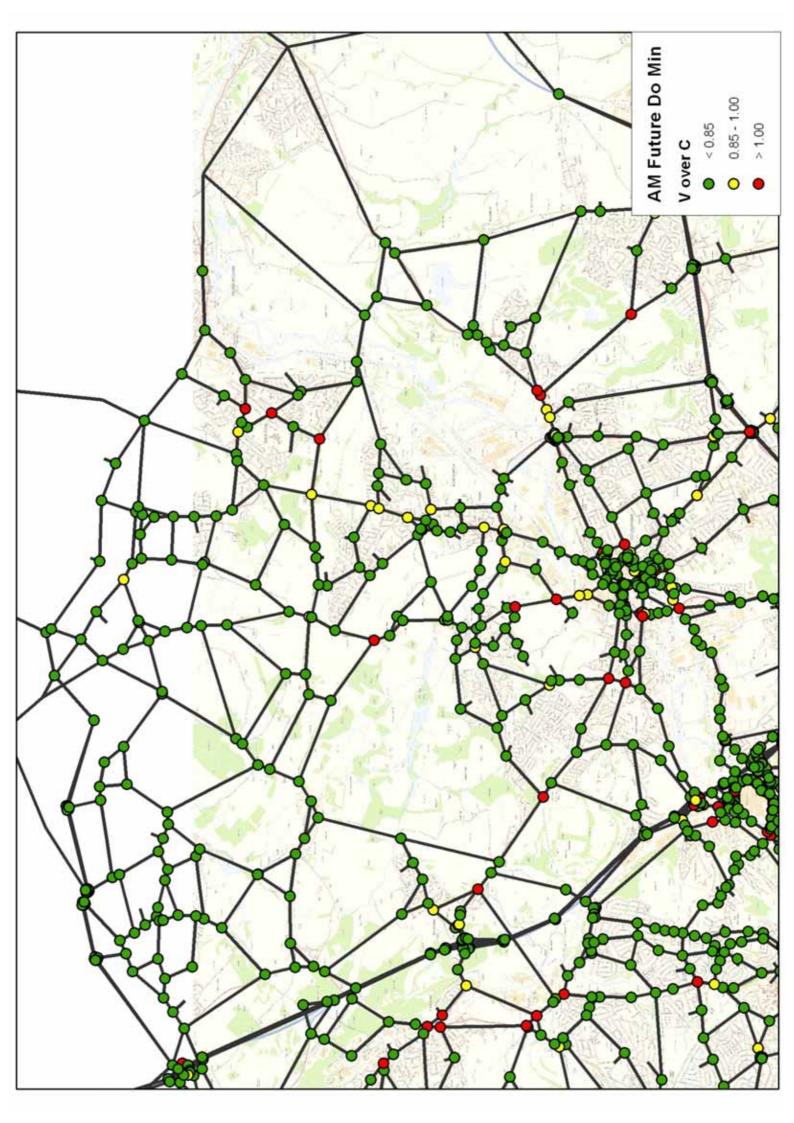


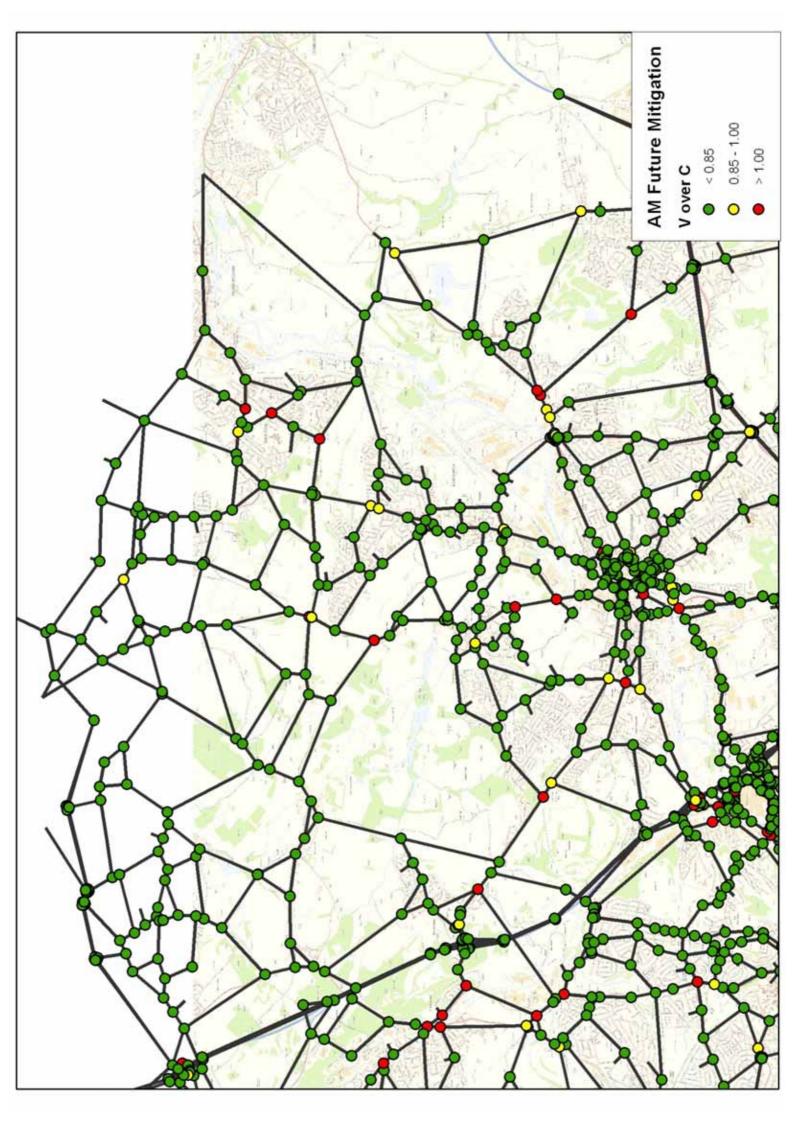


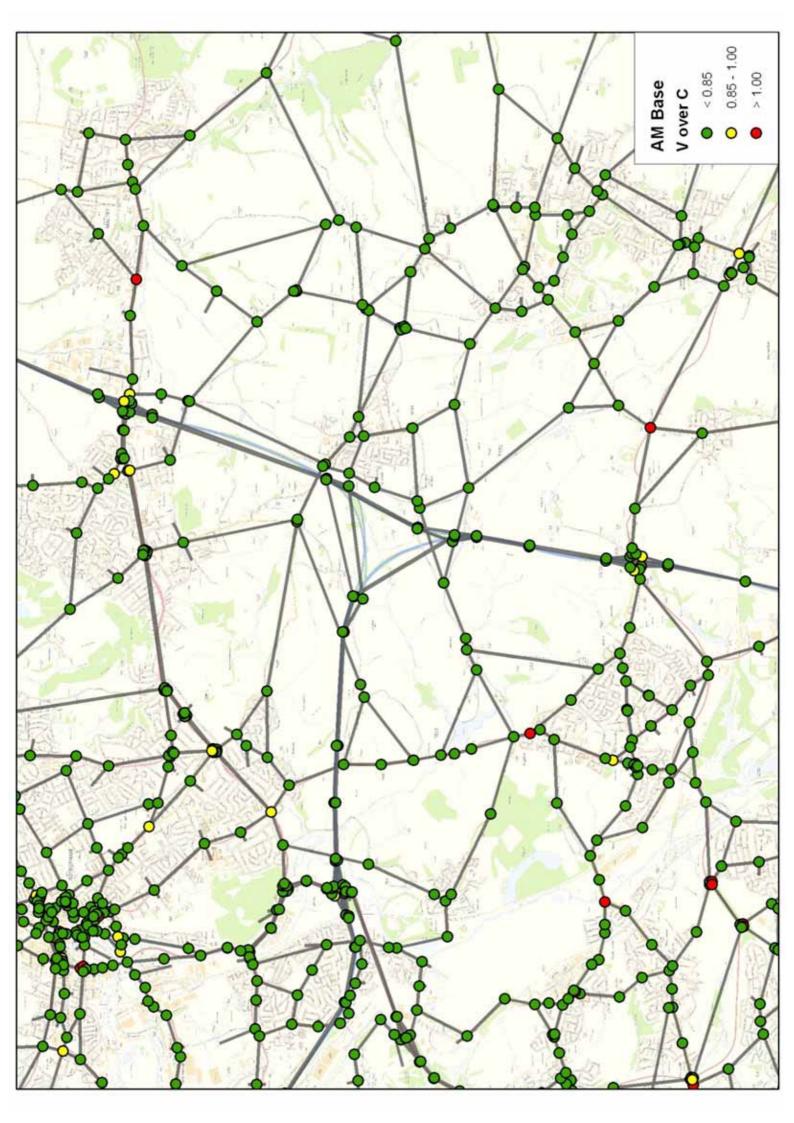


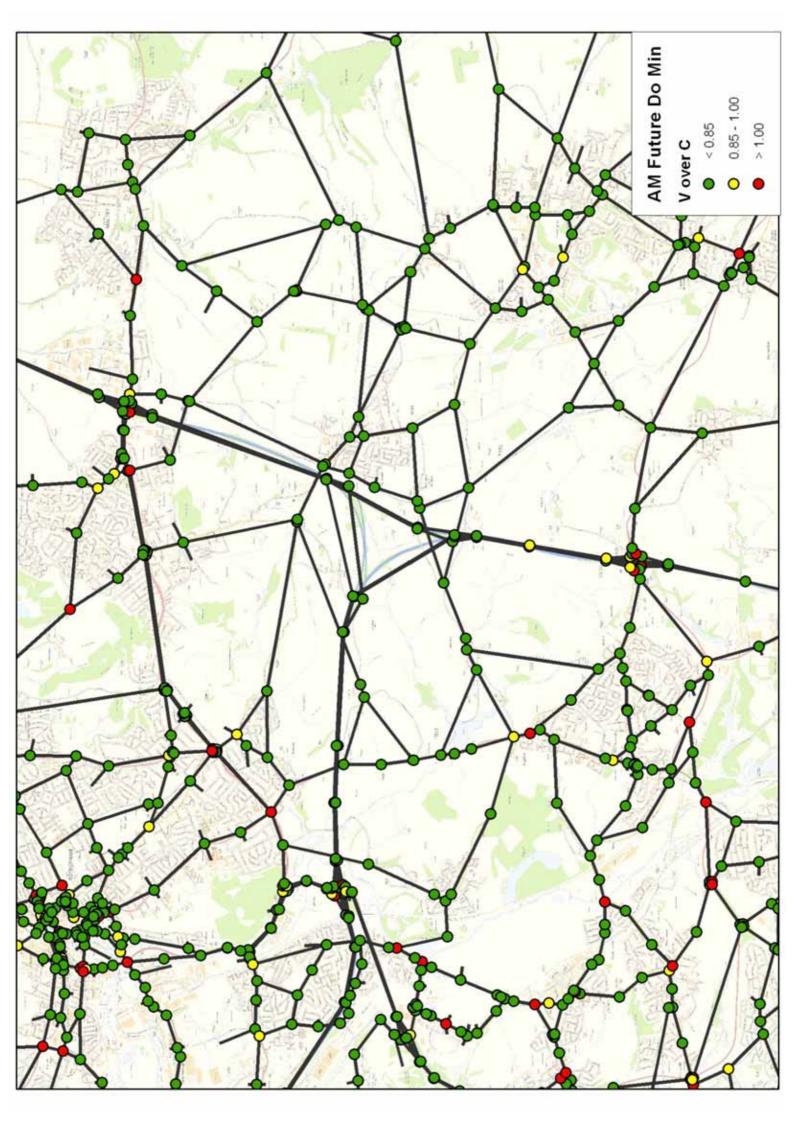


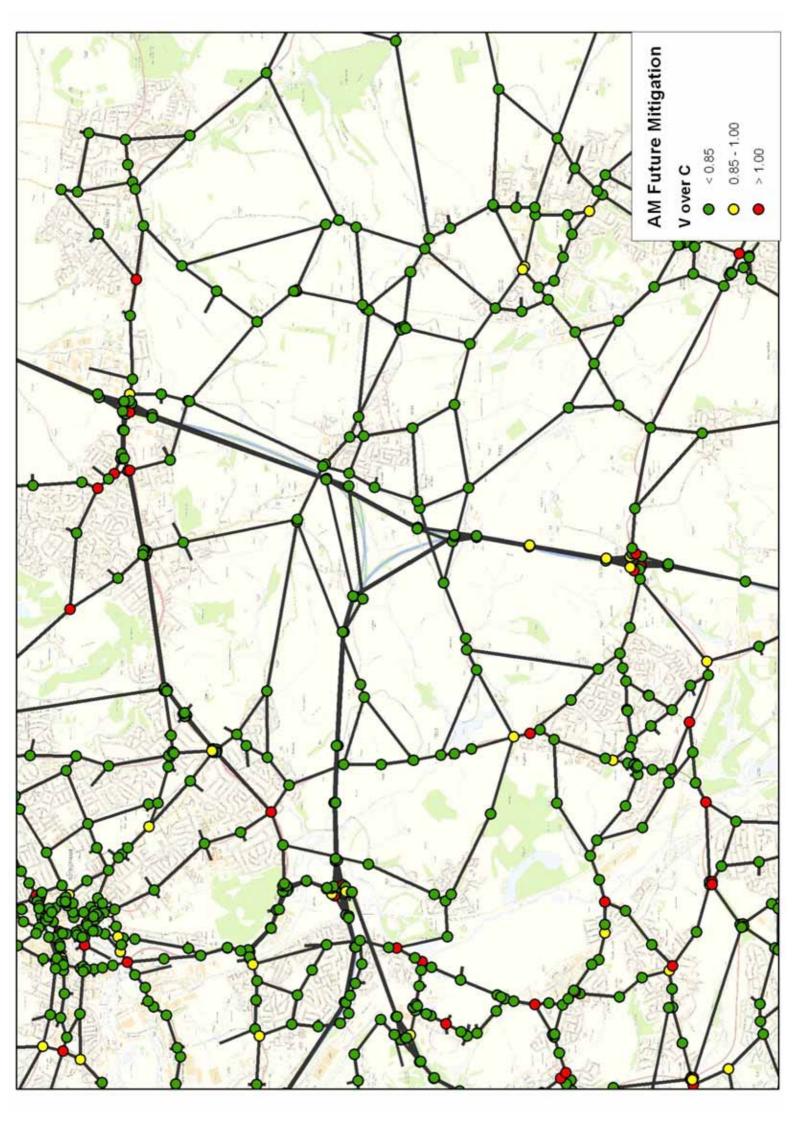


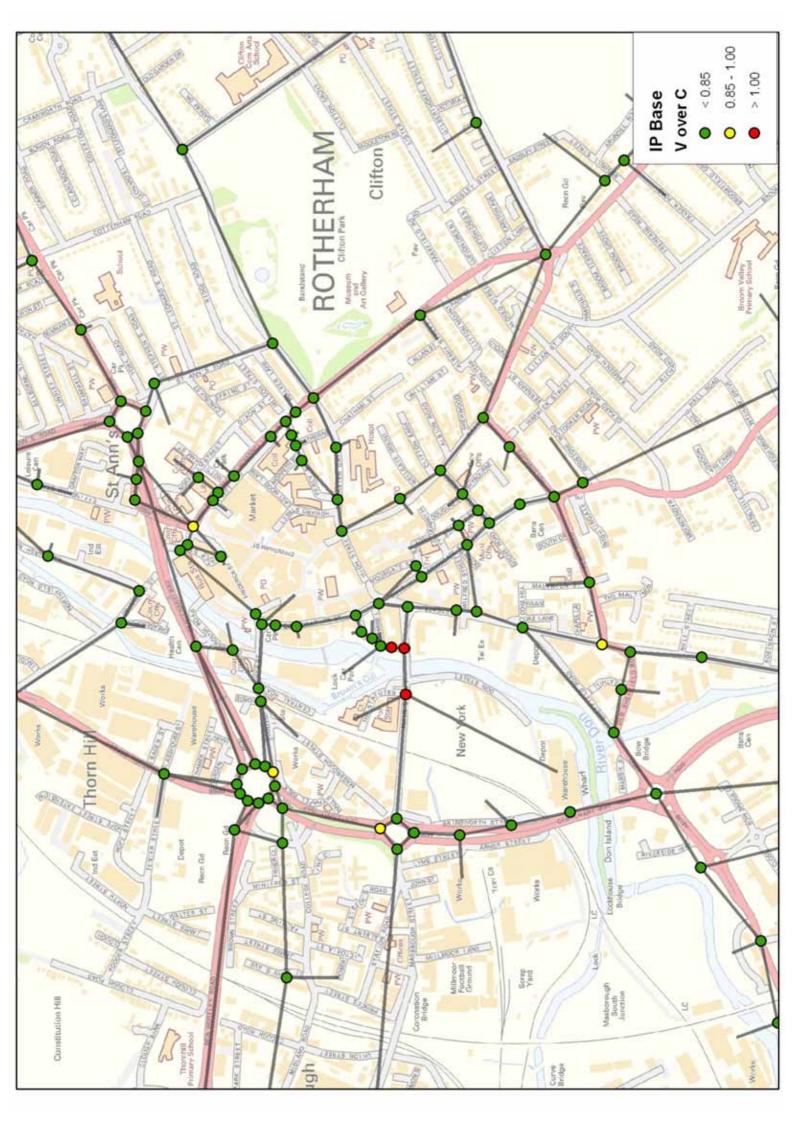


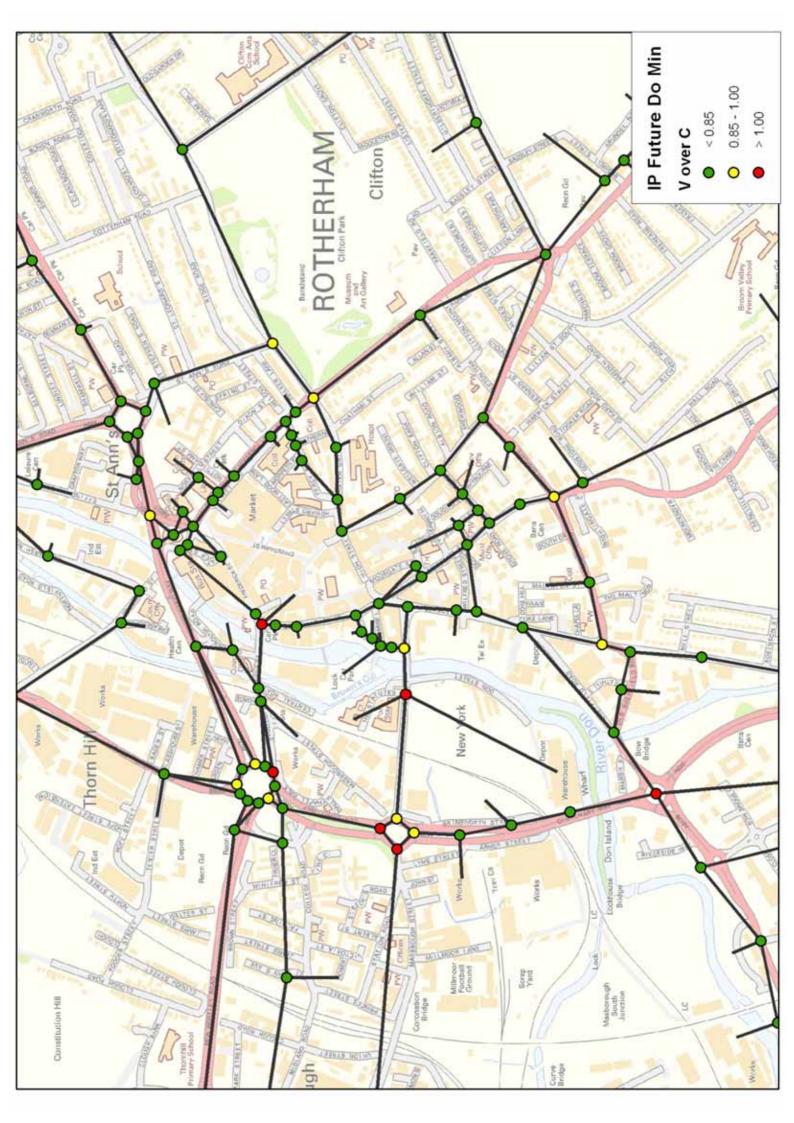


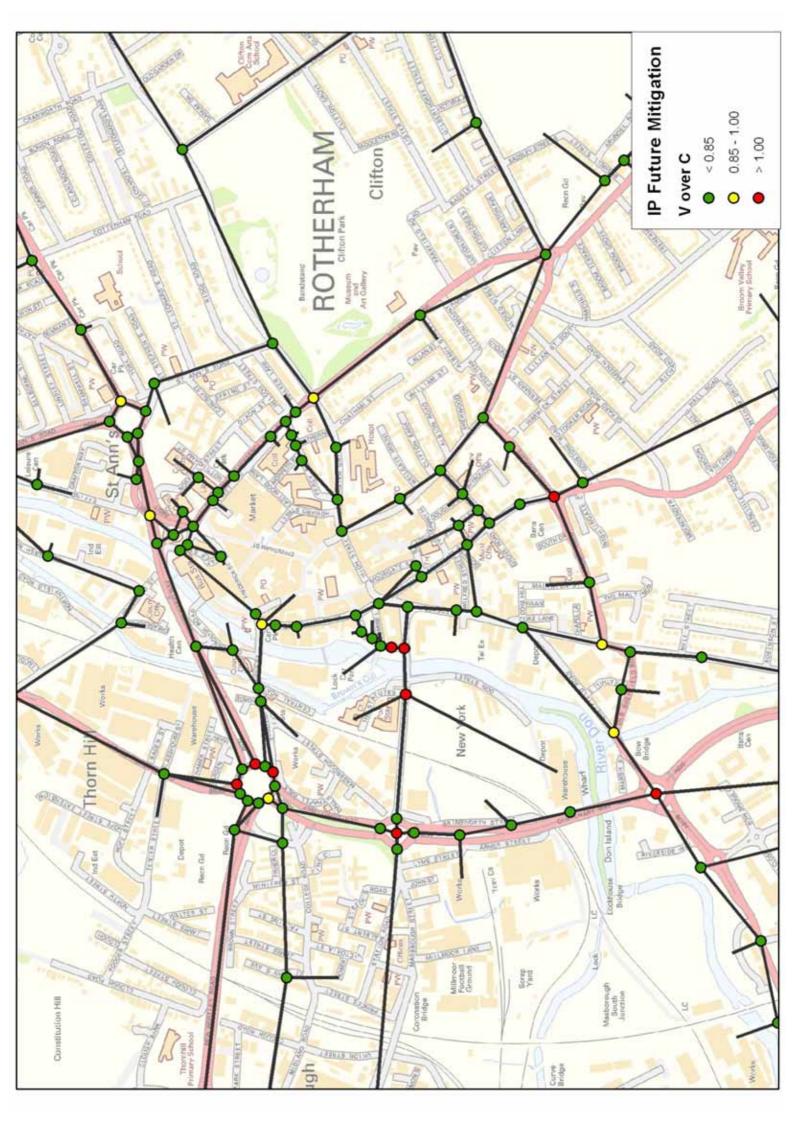


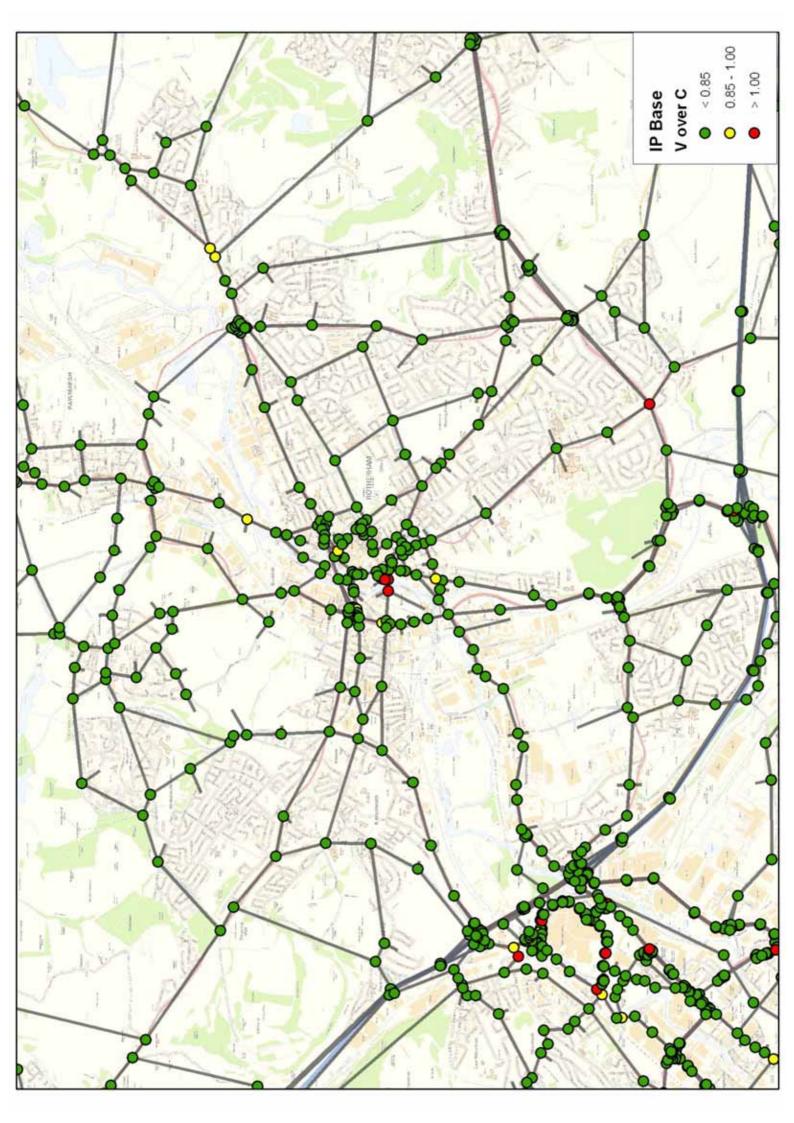


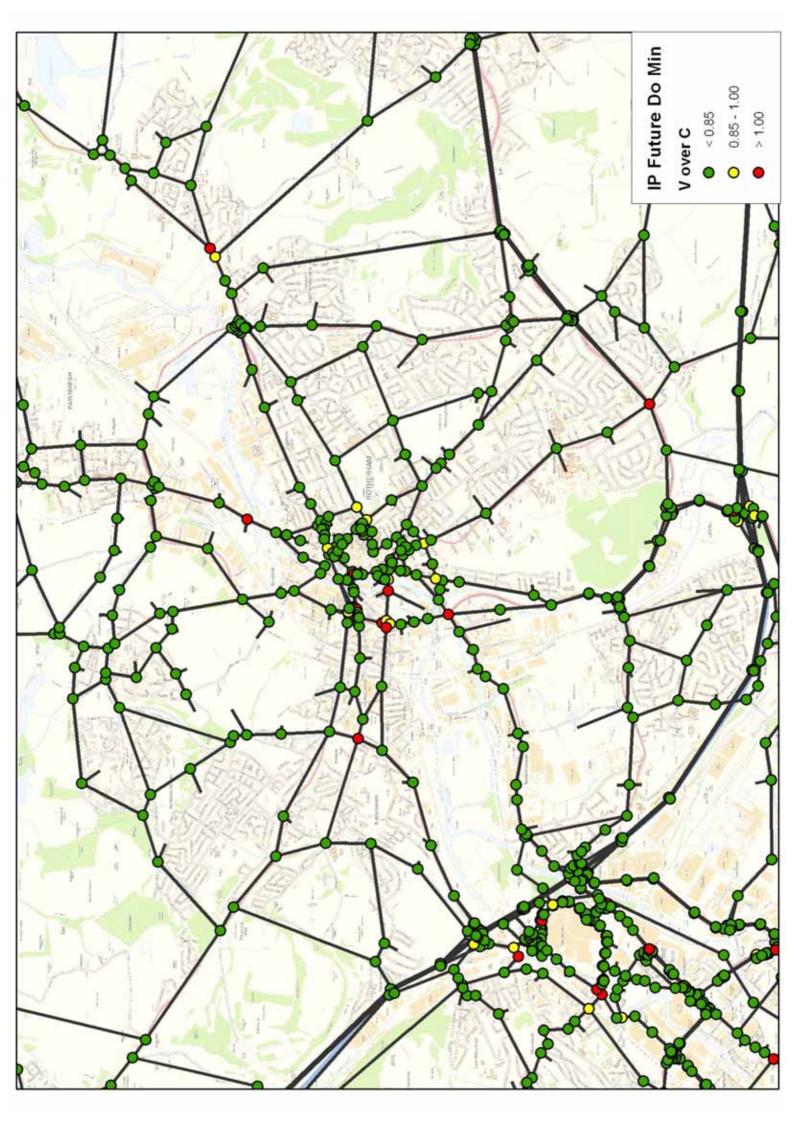


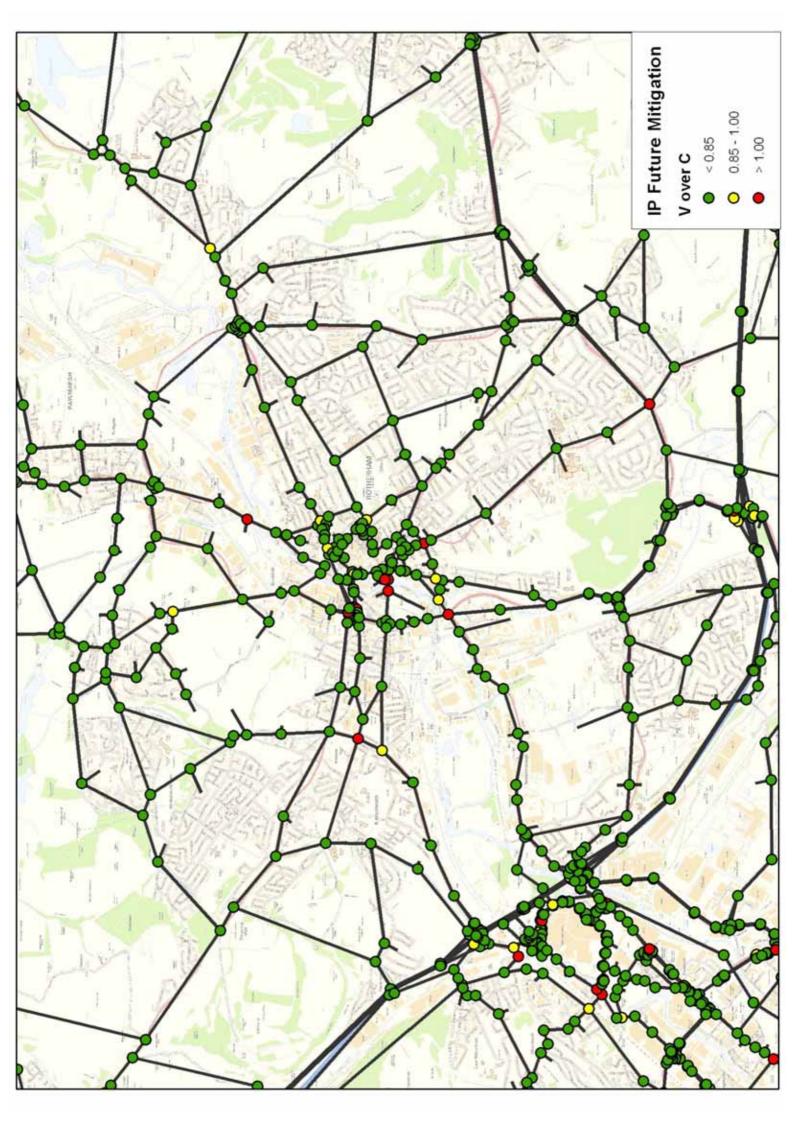


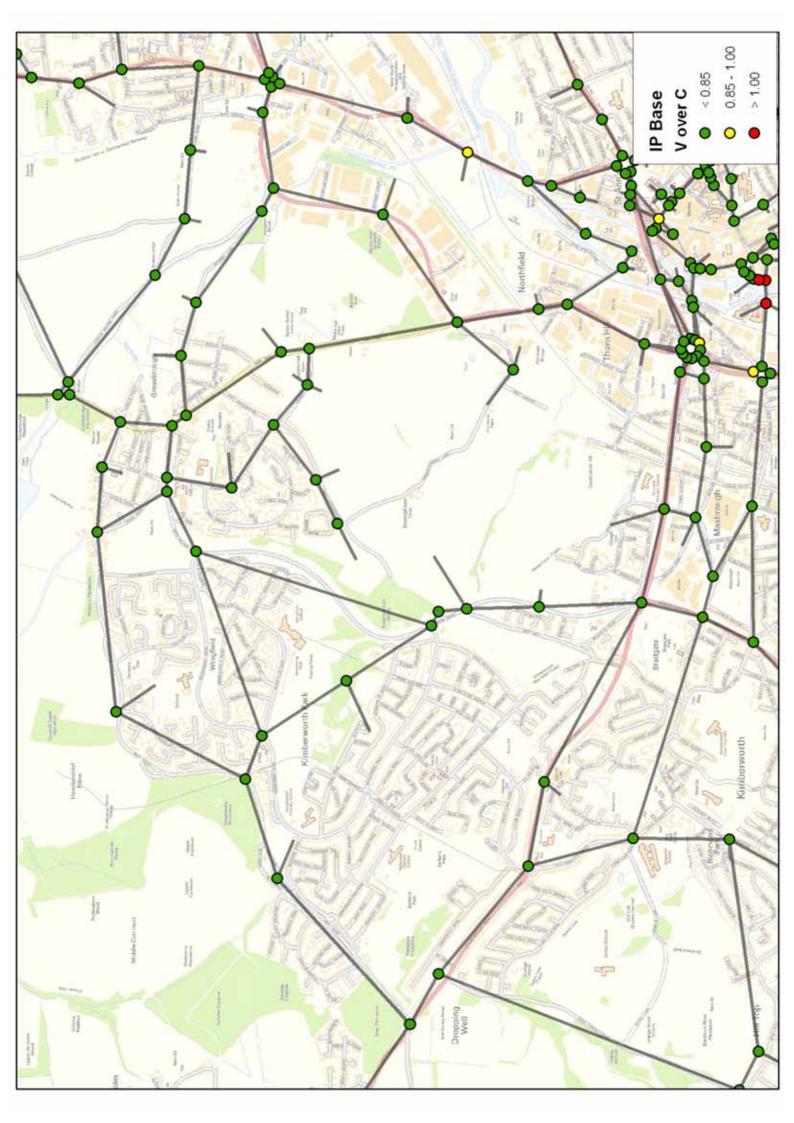


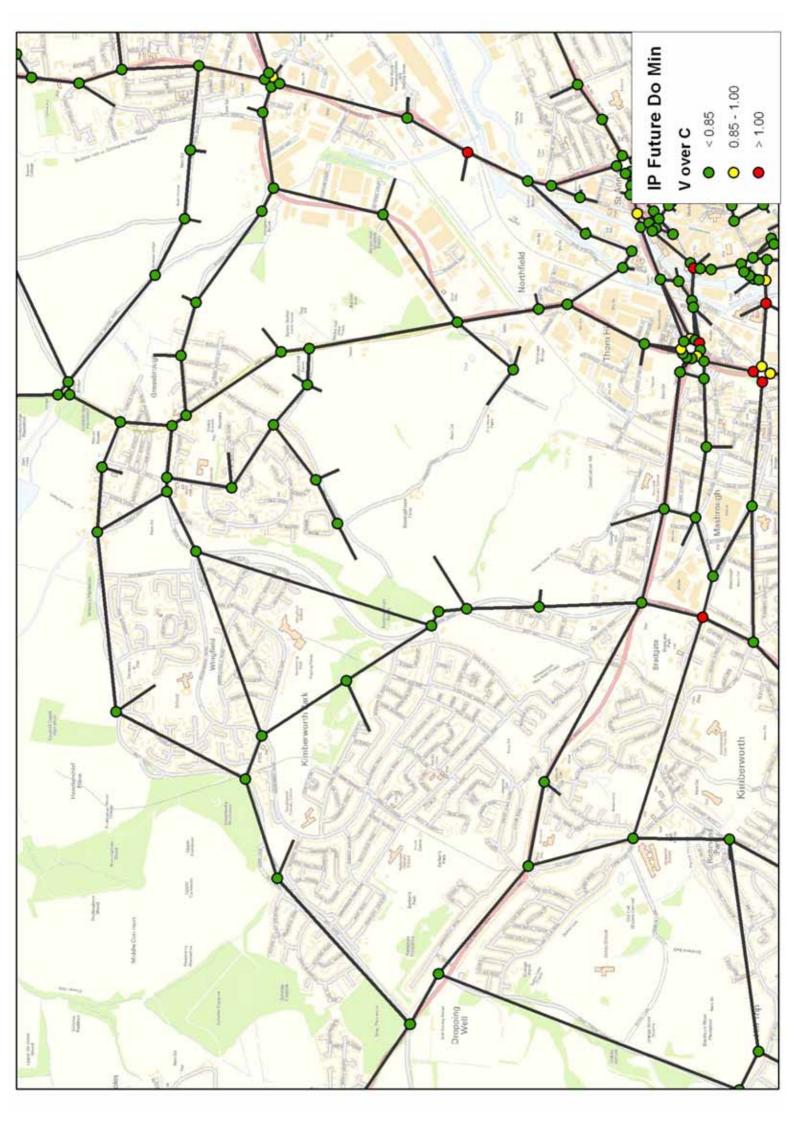


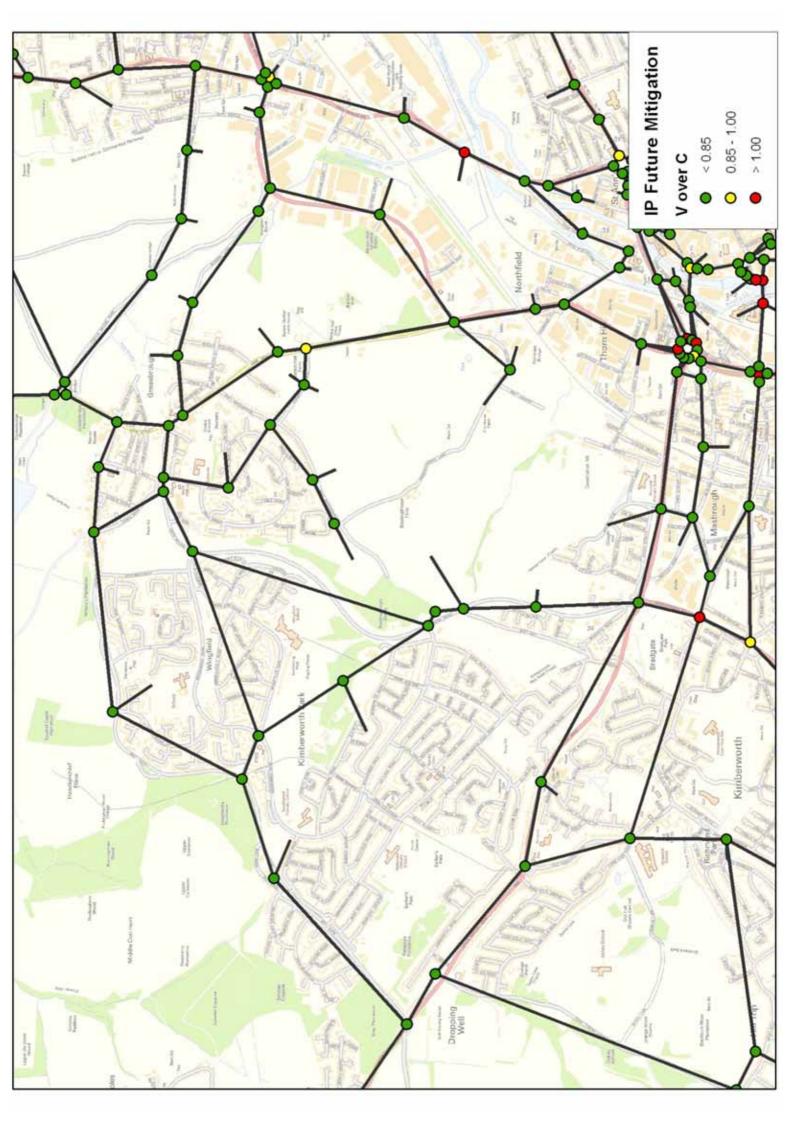


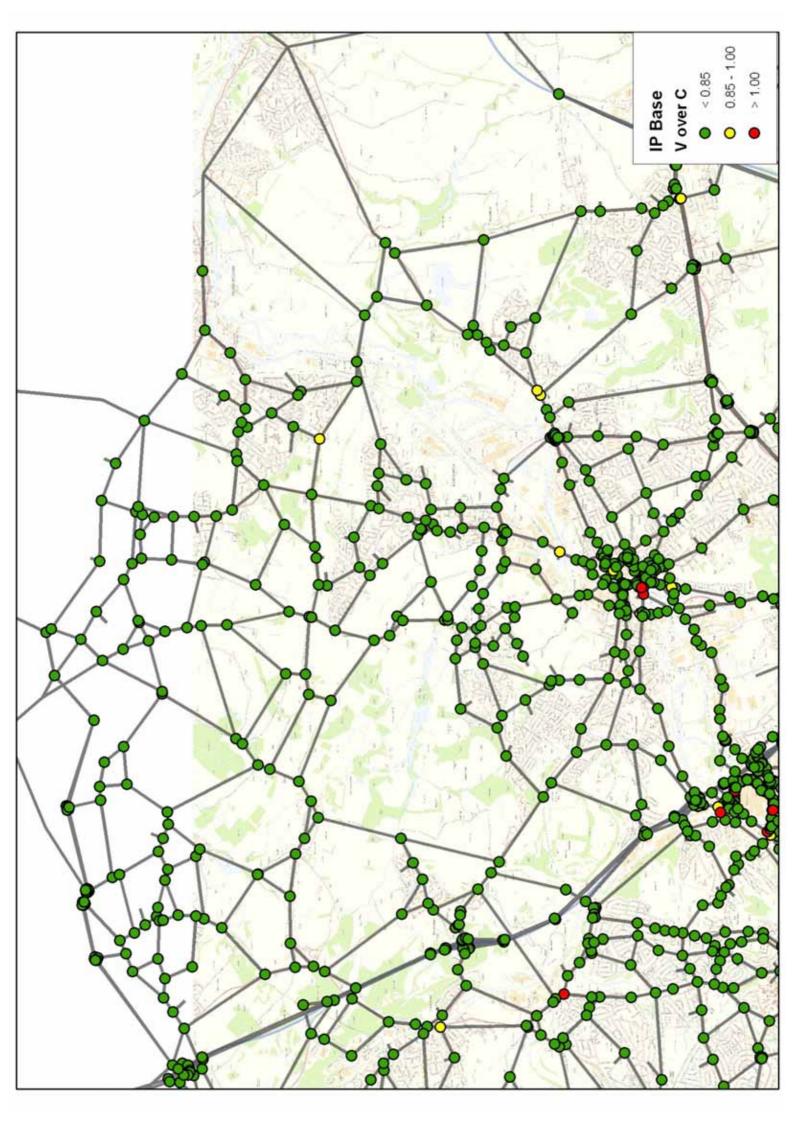

Interpeak Plots

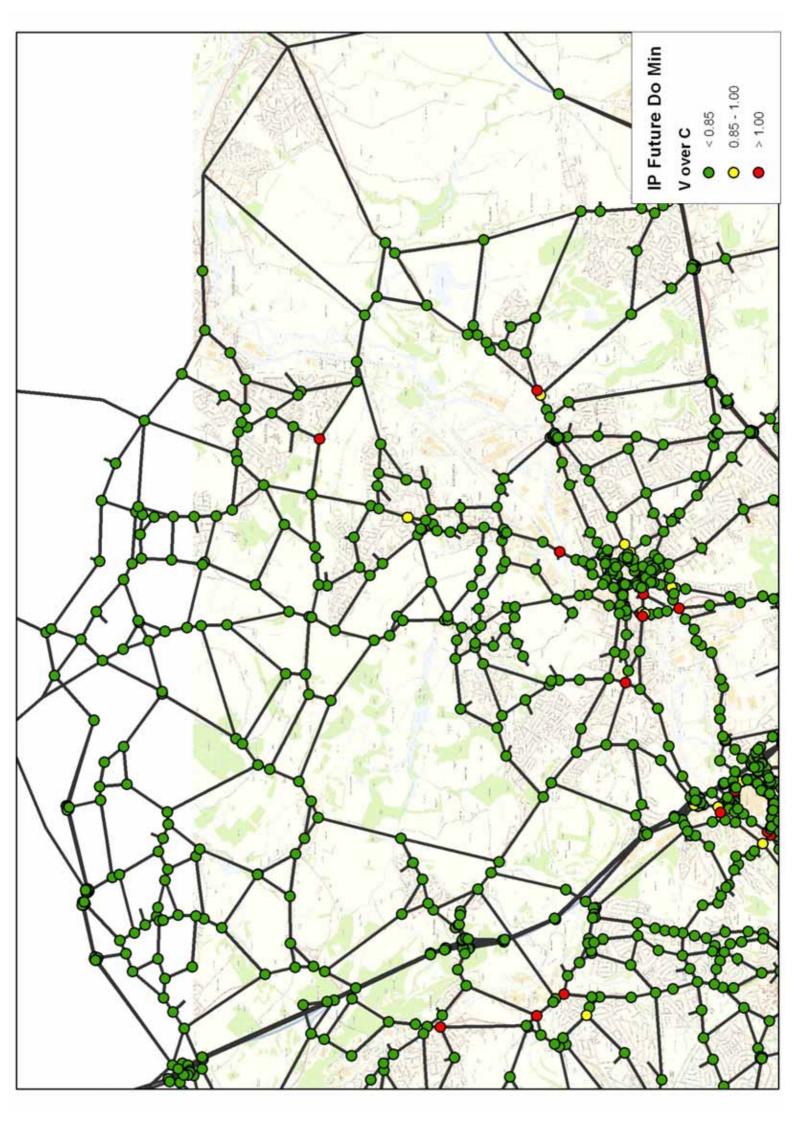


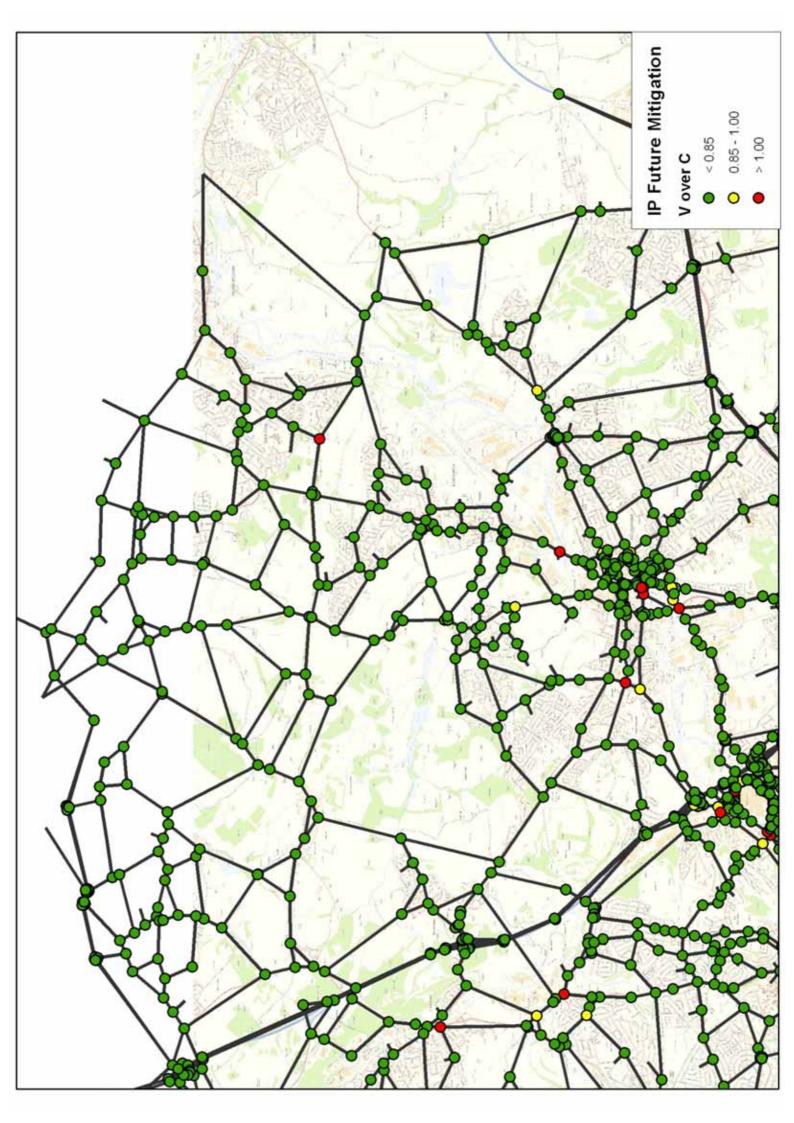


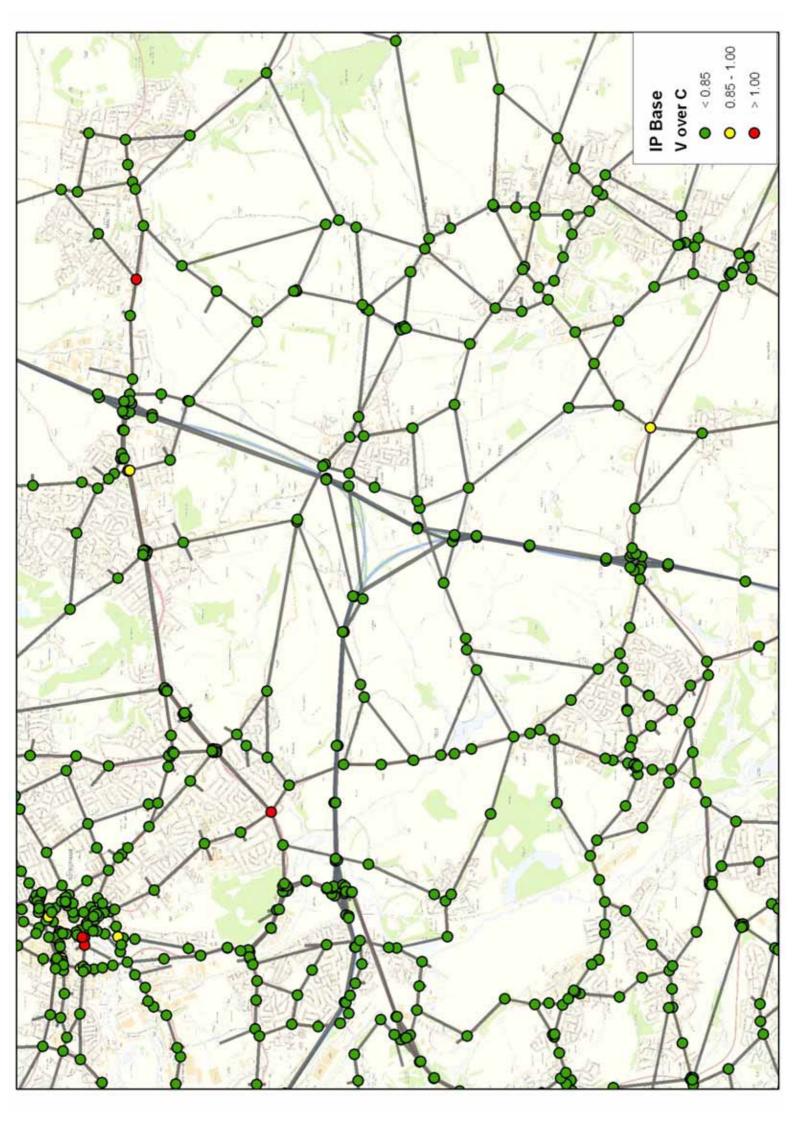


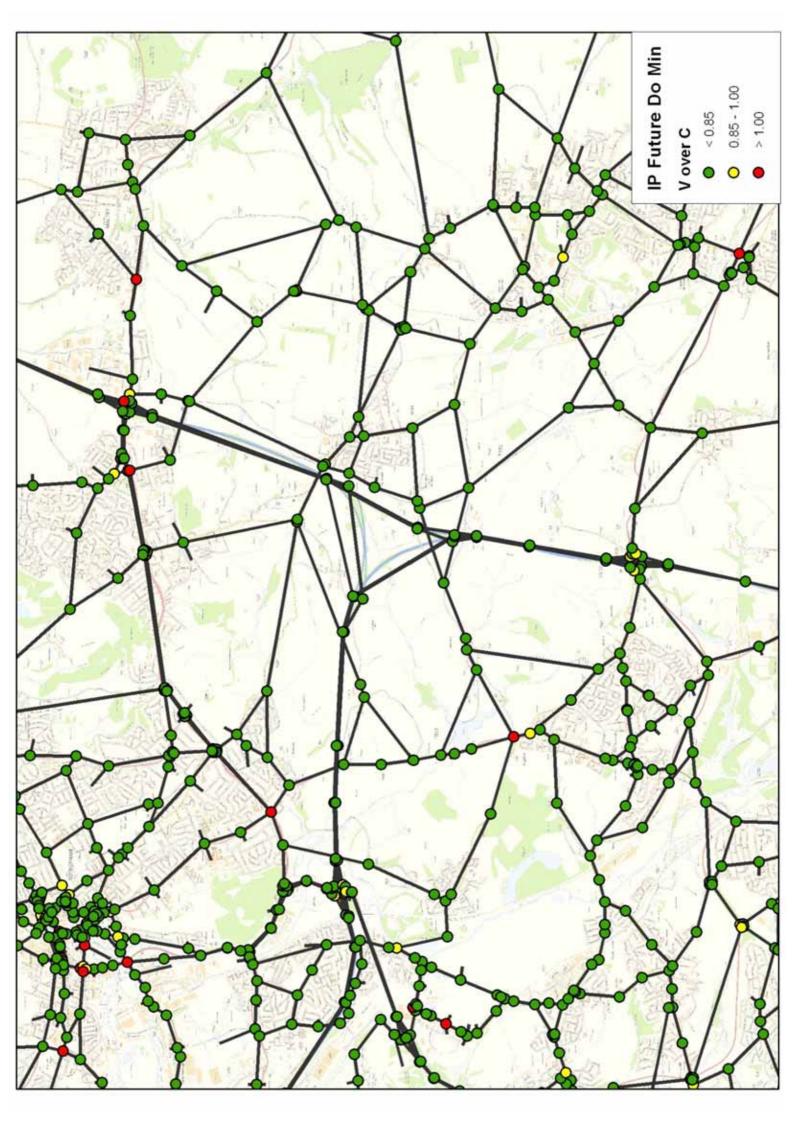


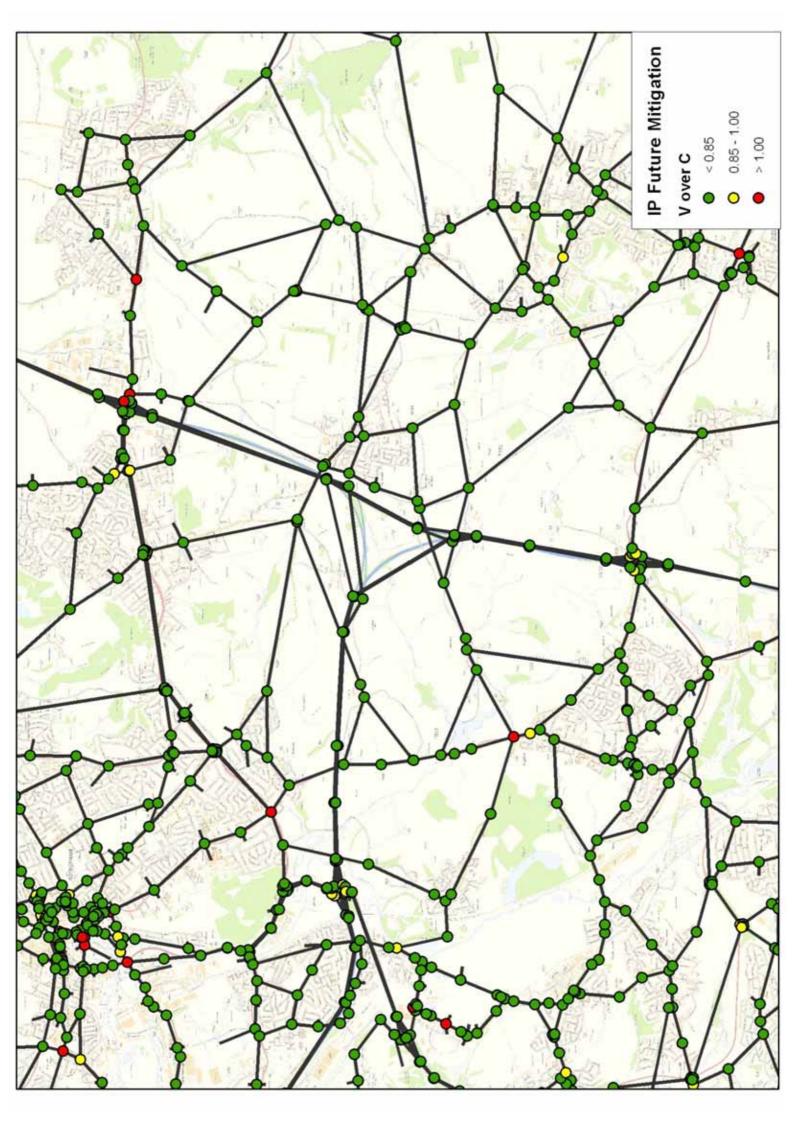


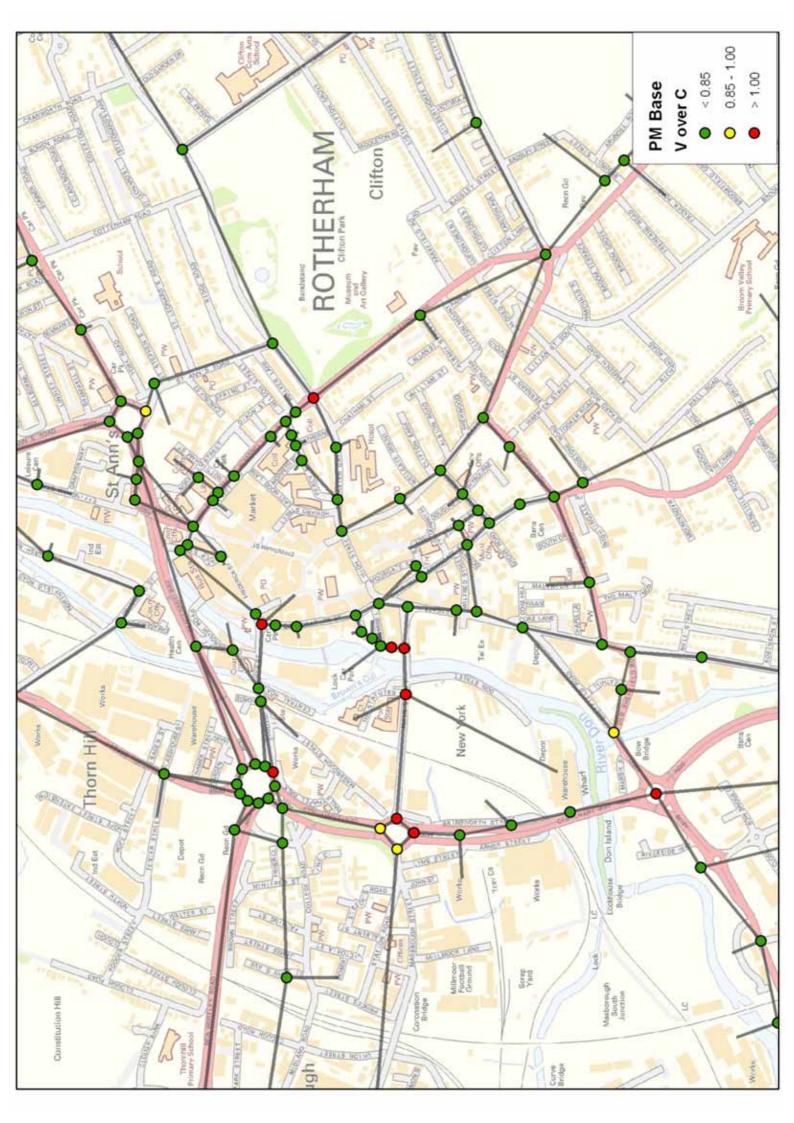


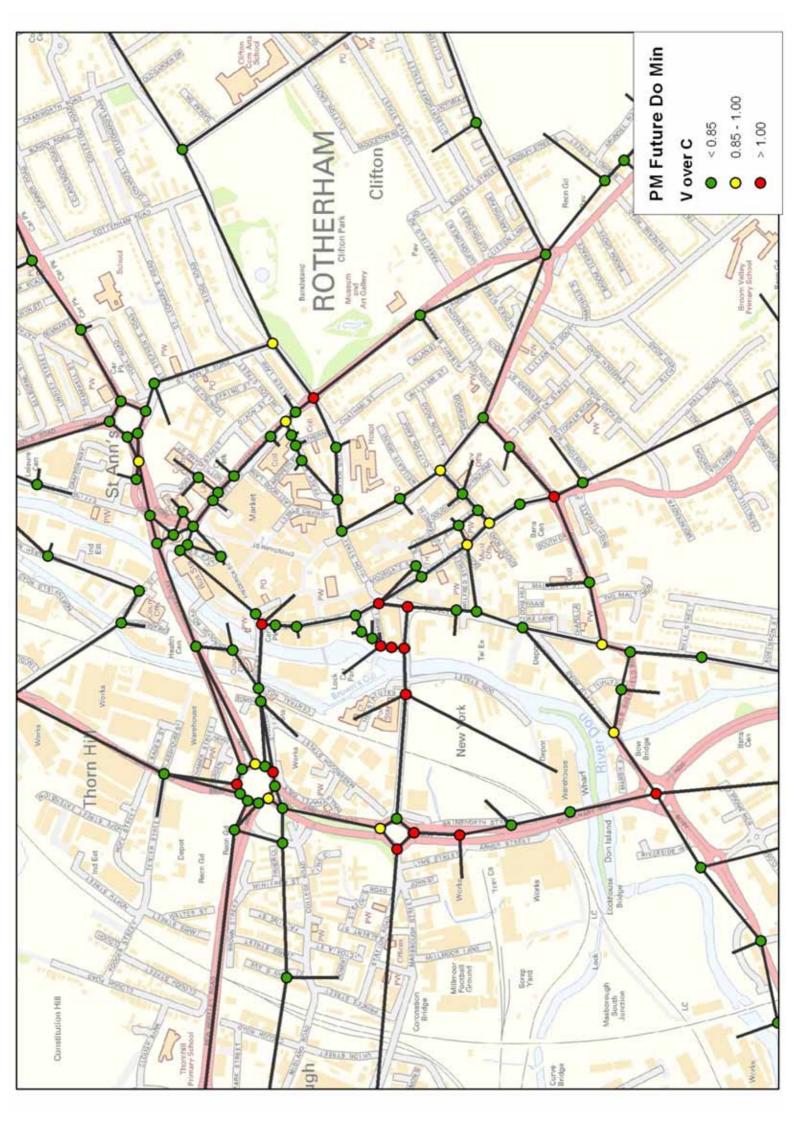


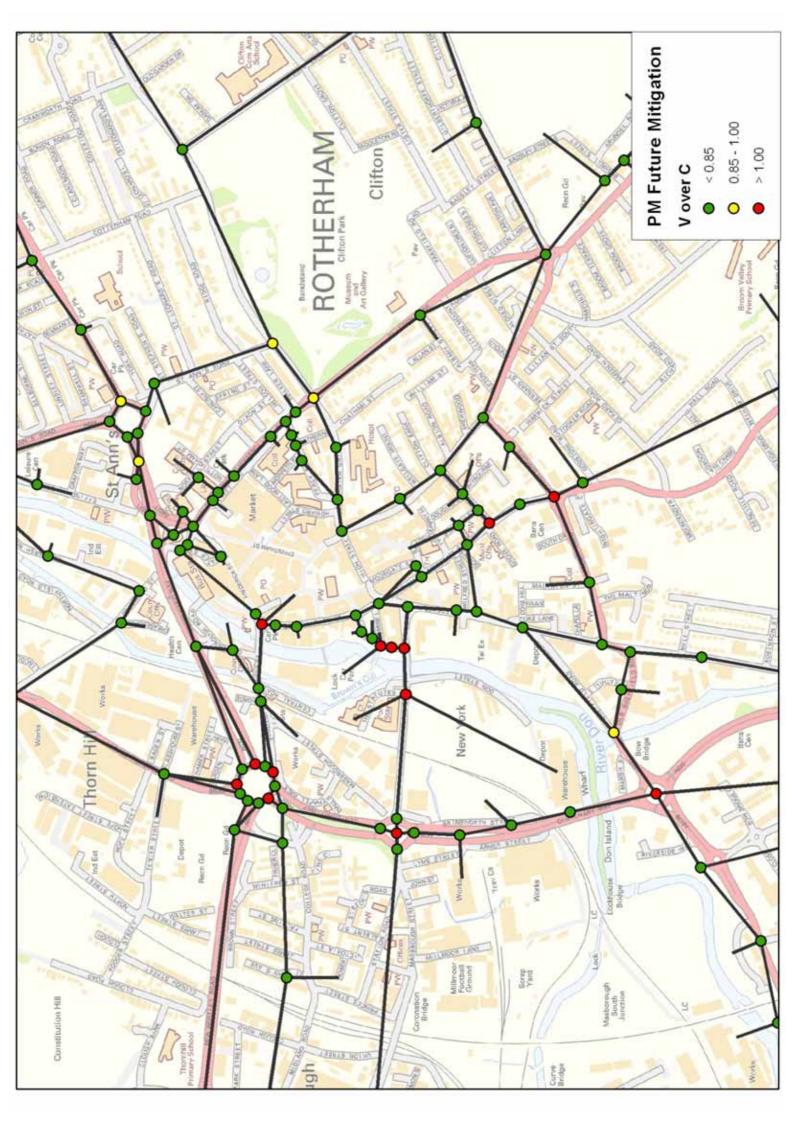


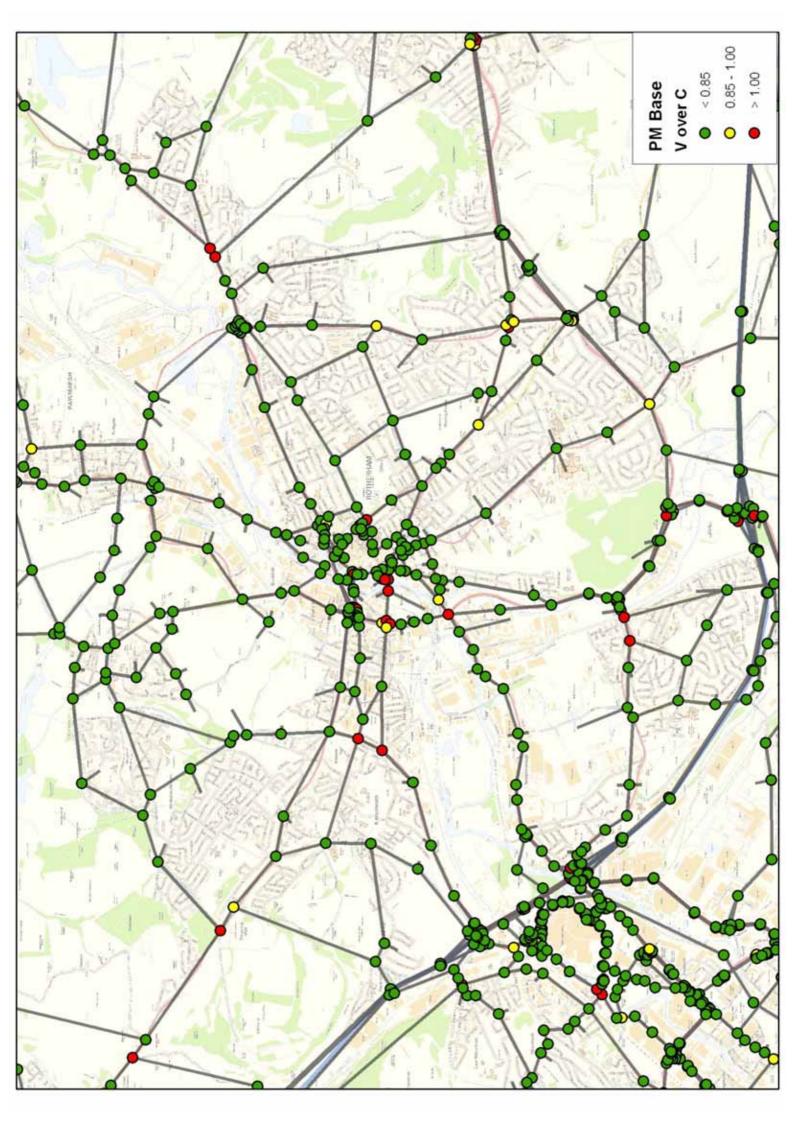


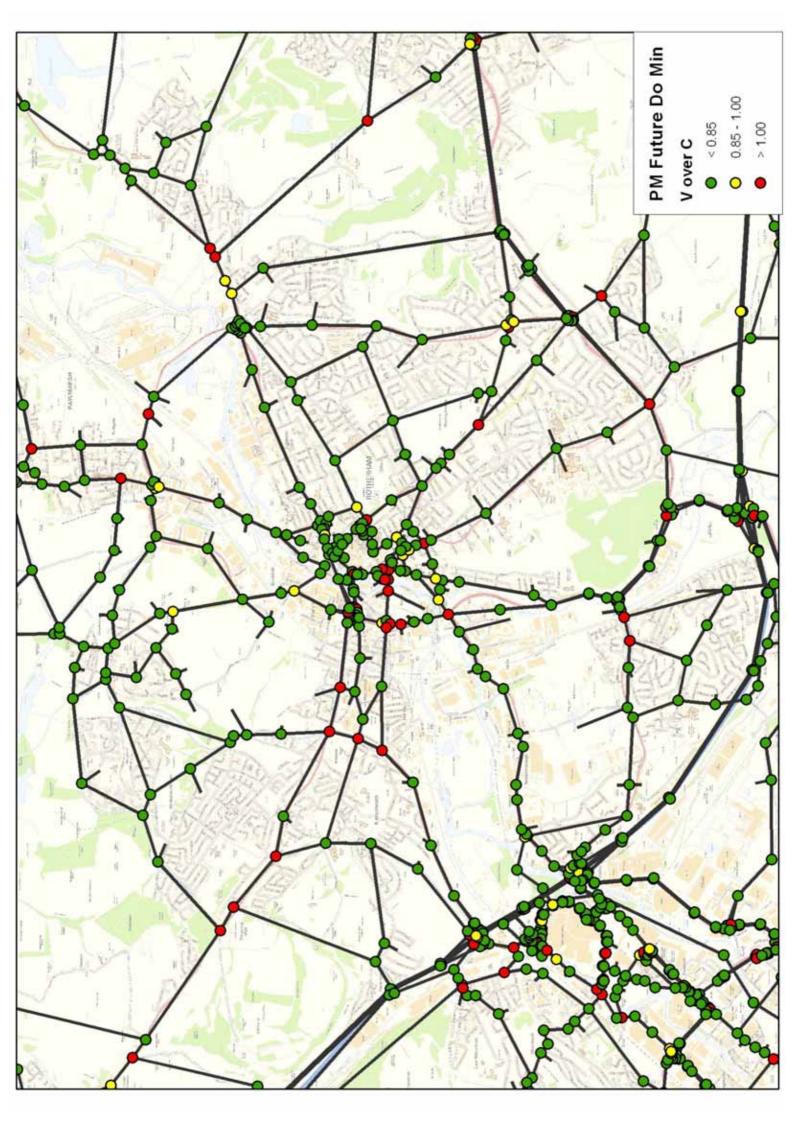


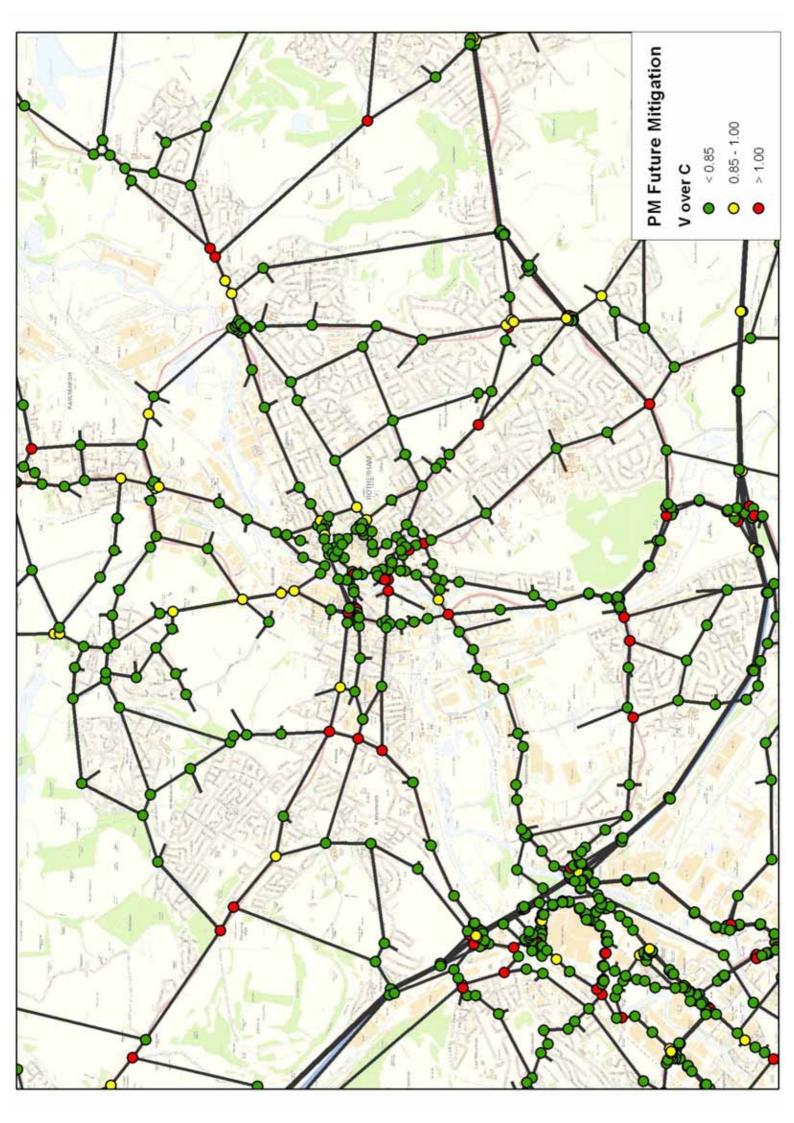


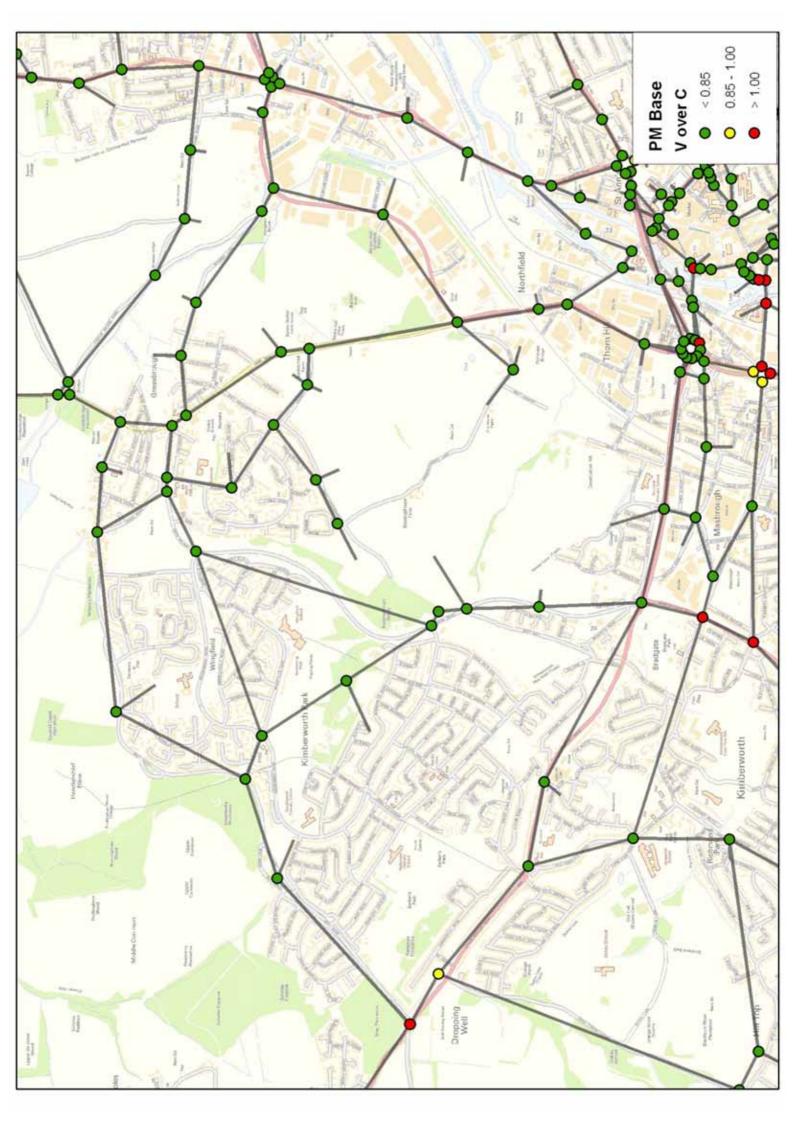


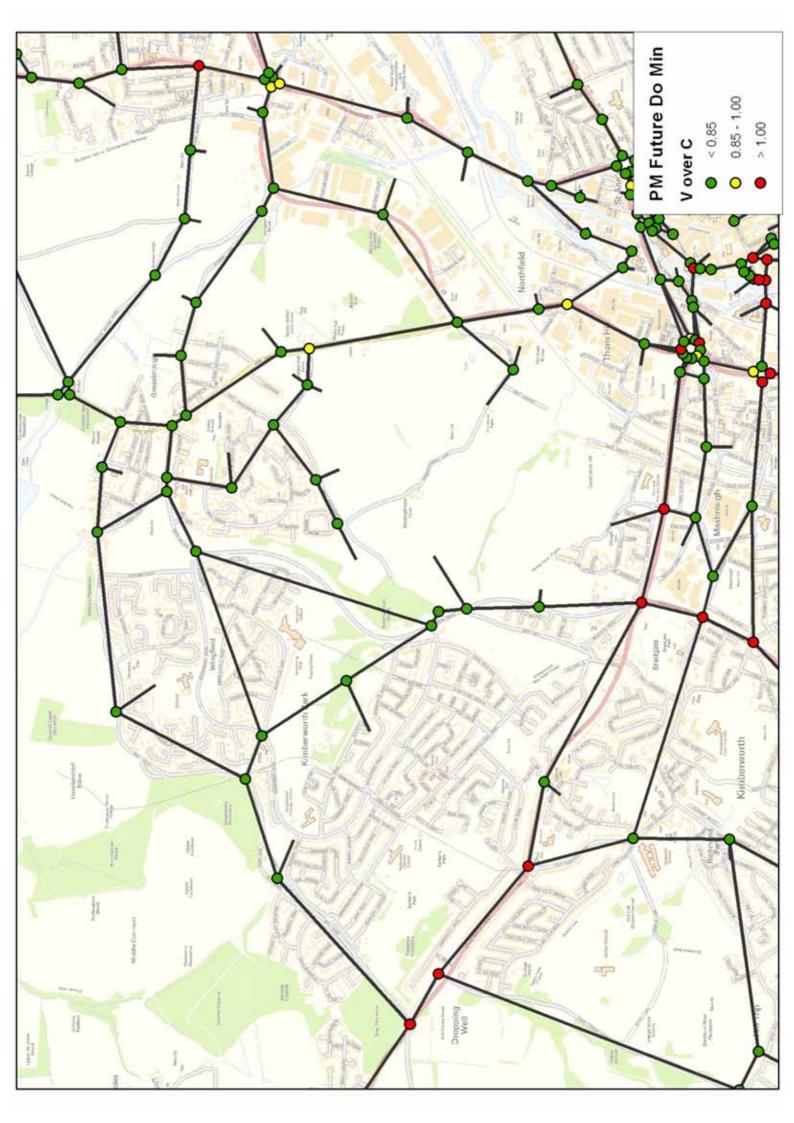


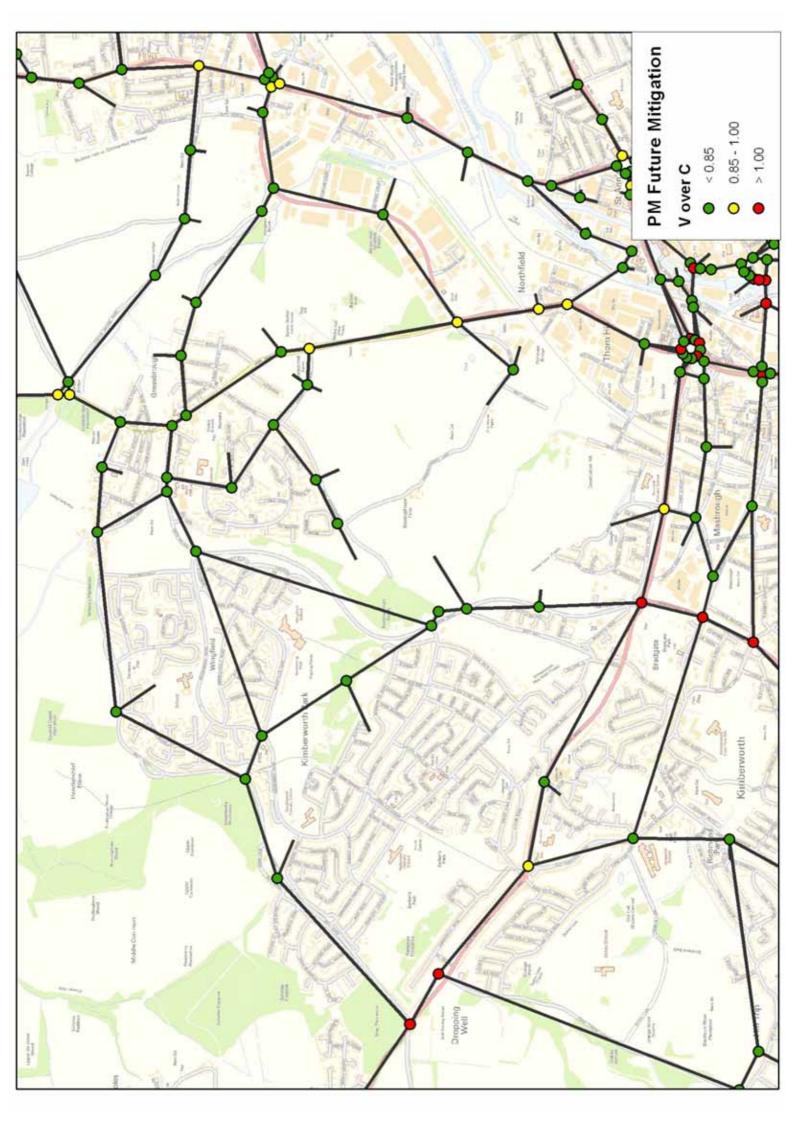


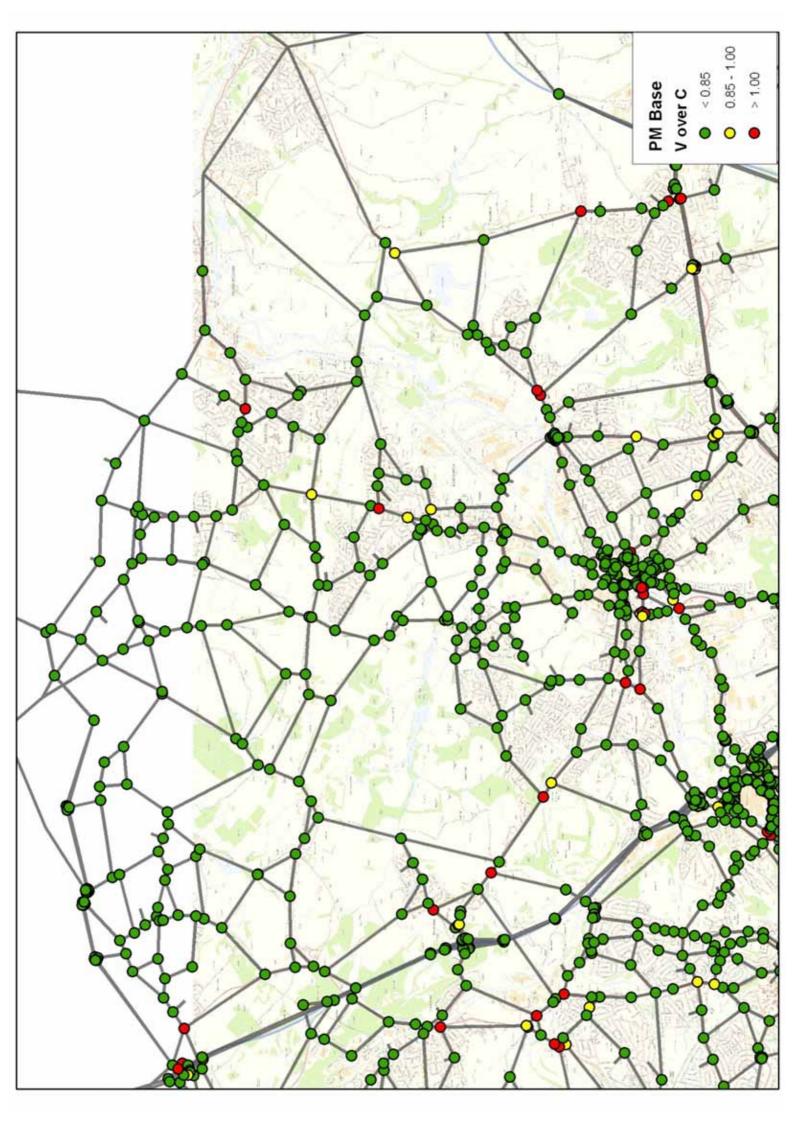

Evening Peak Plots

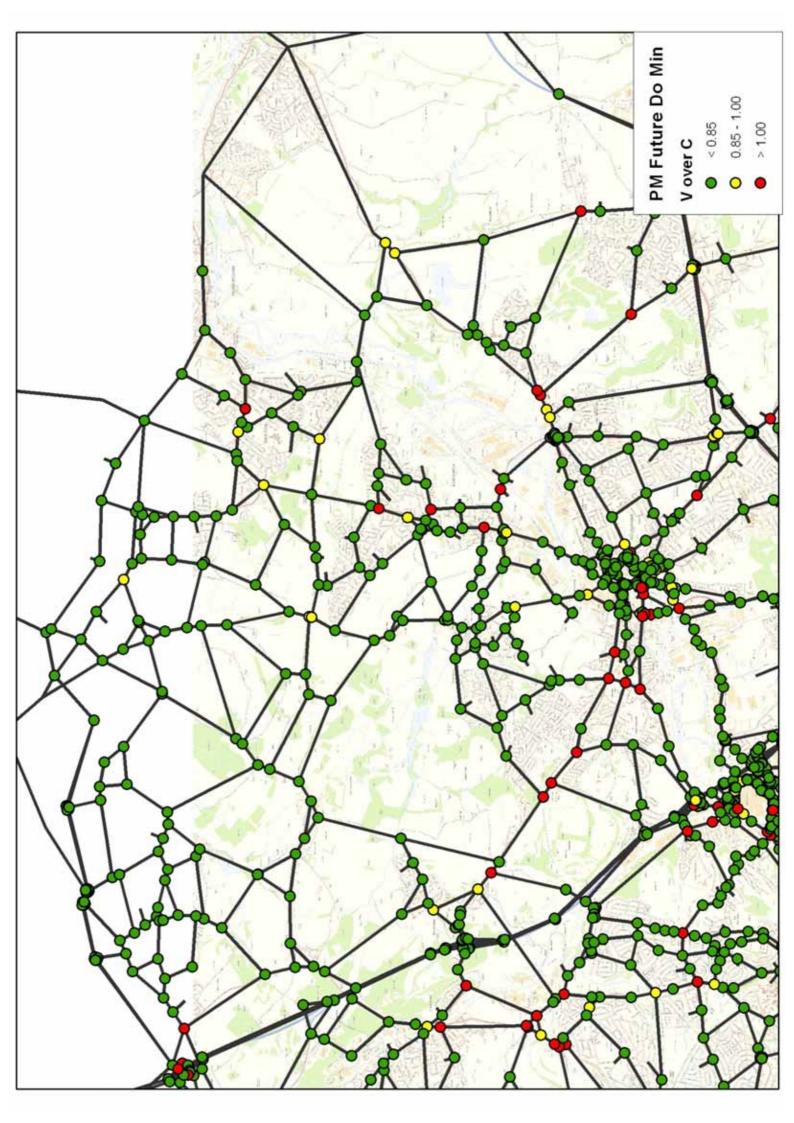


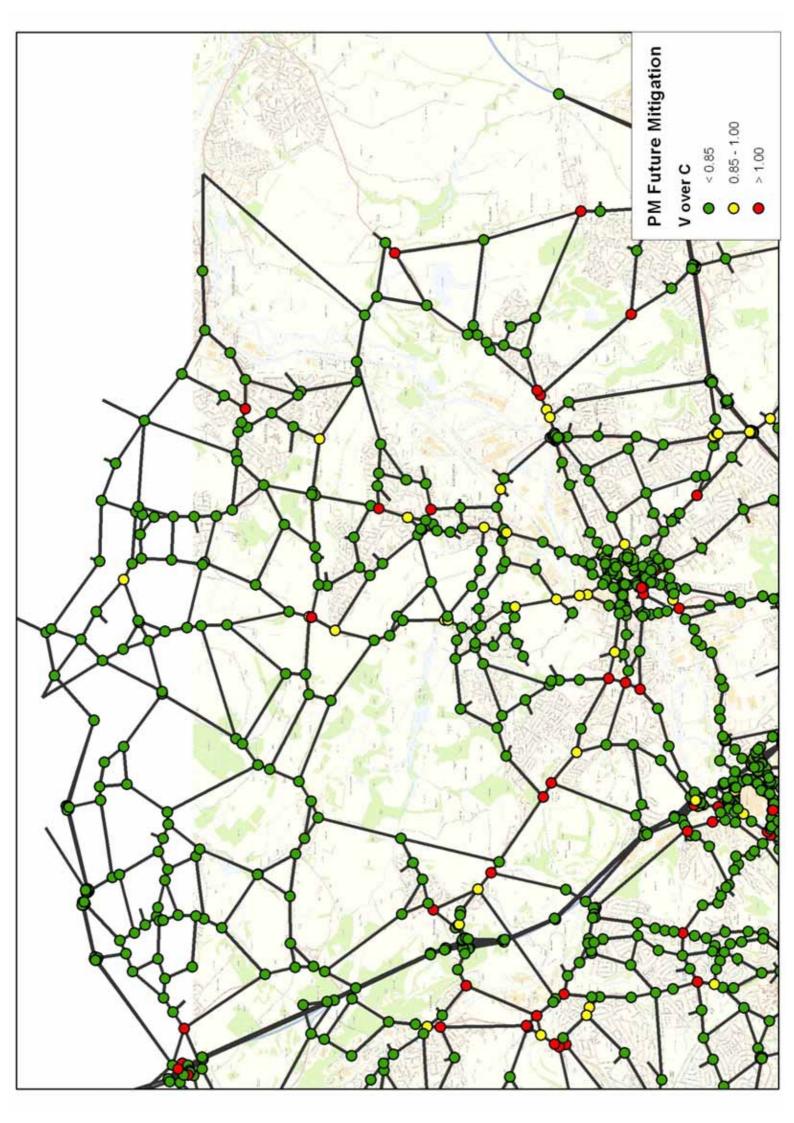


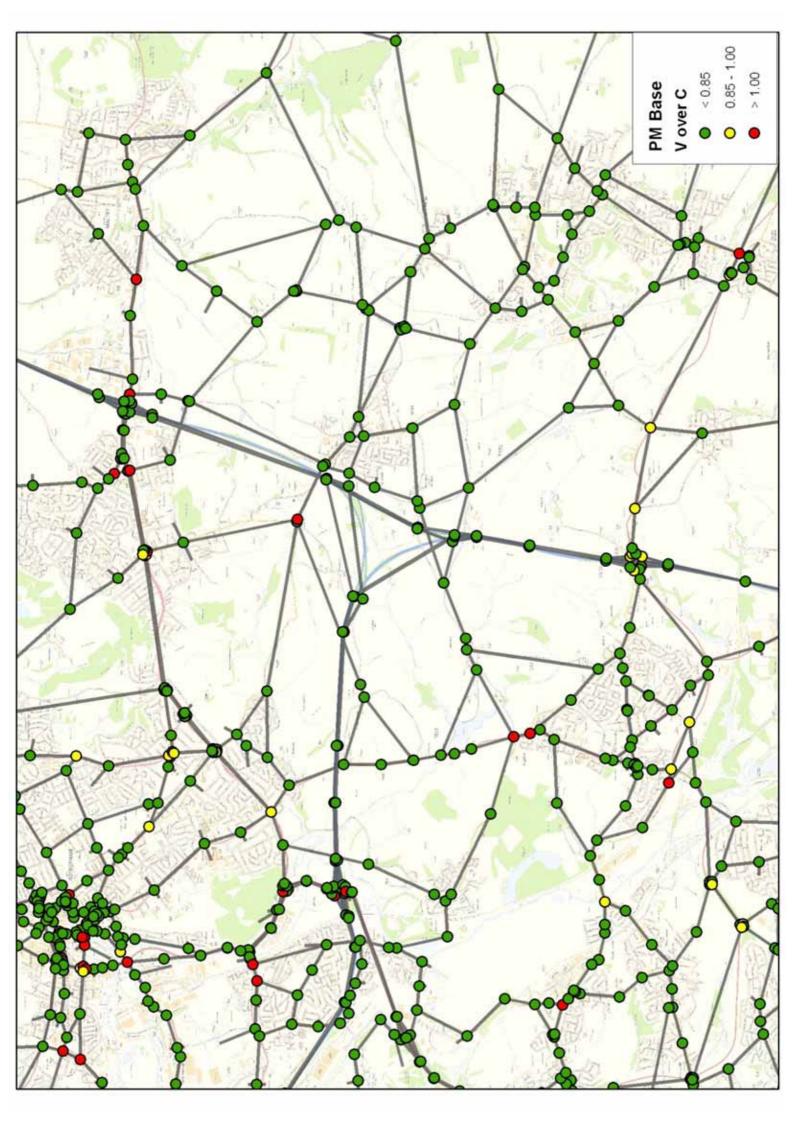


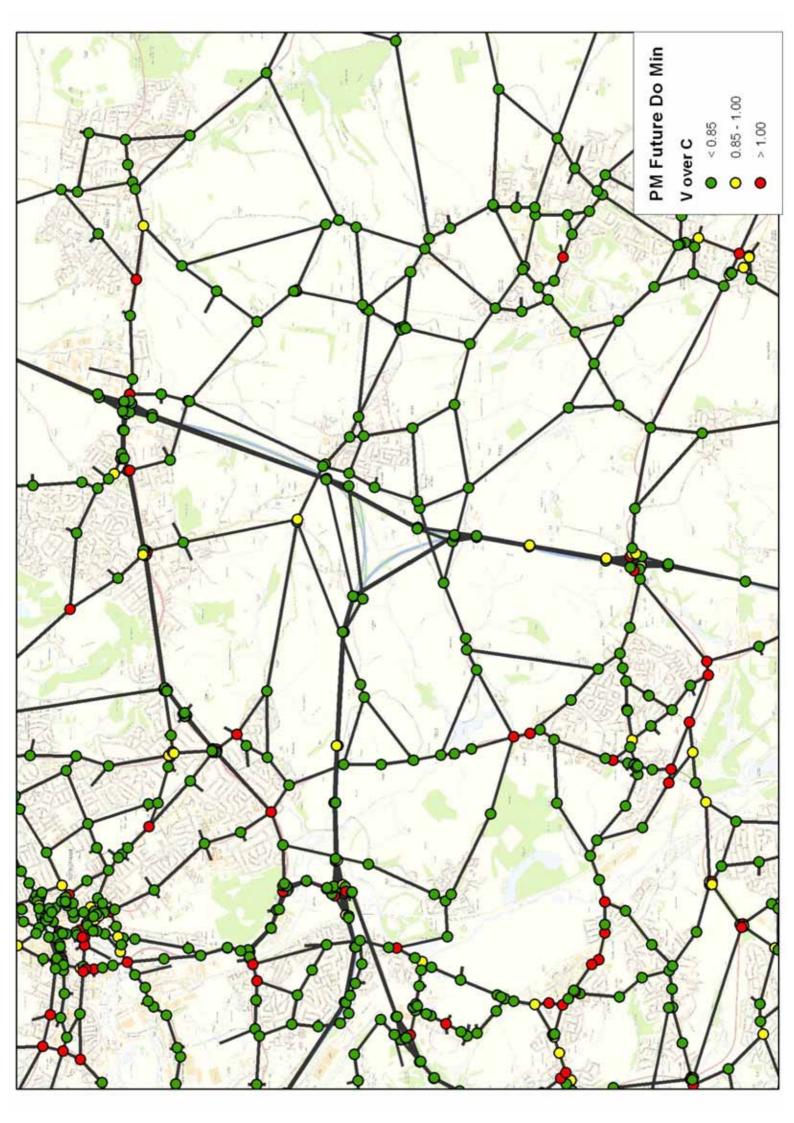


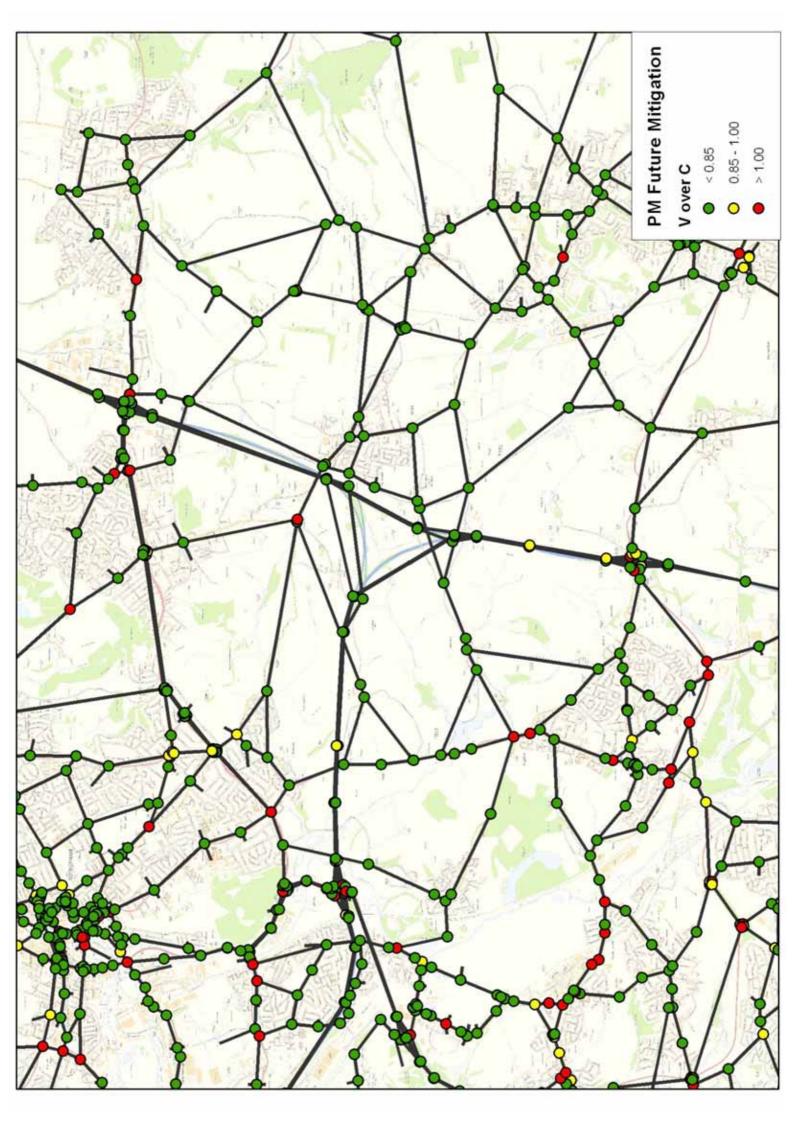


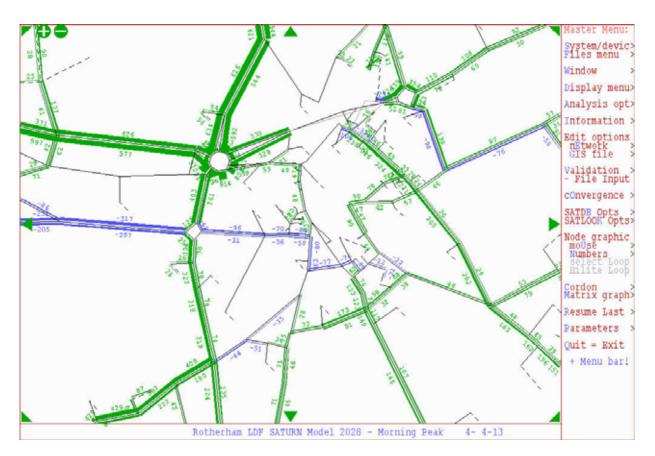


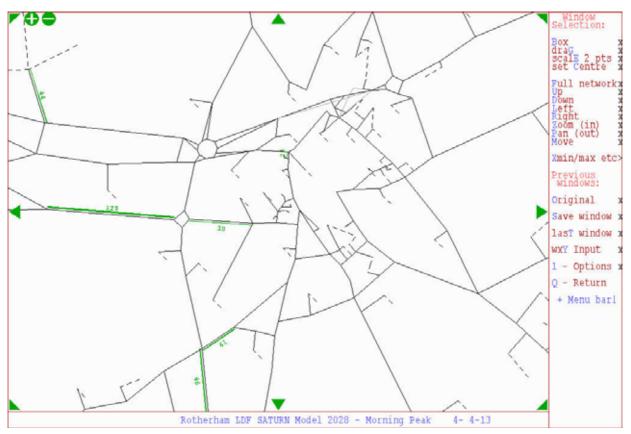






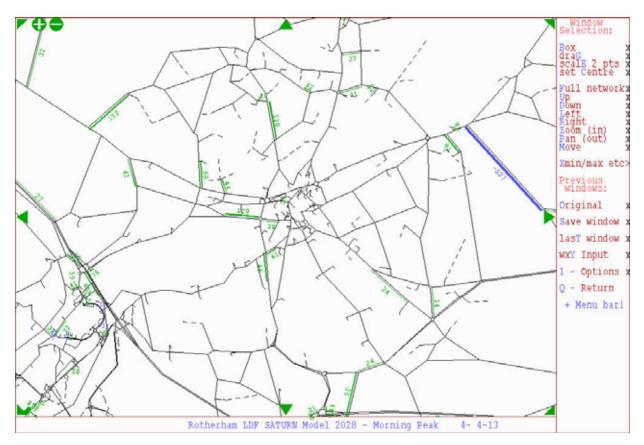


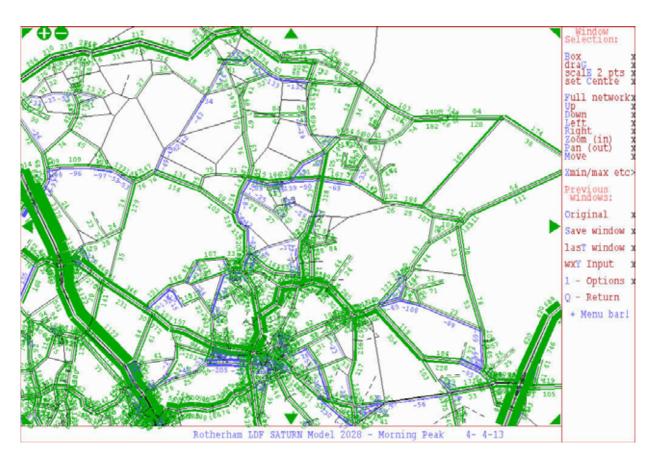


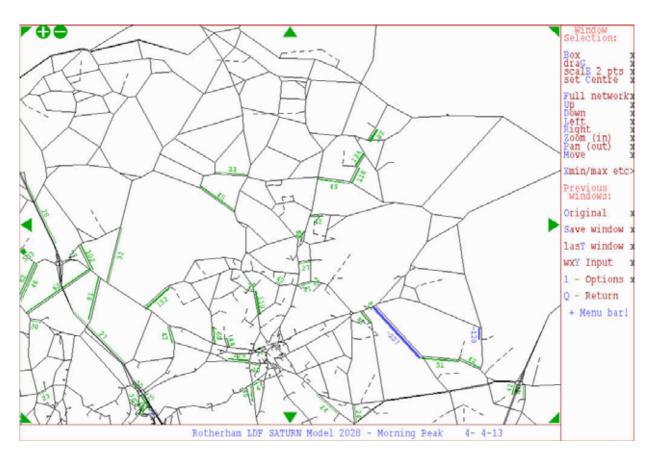


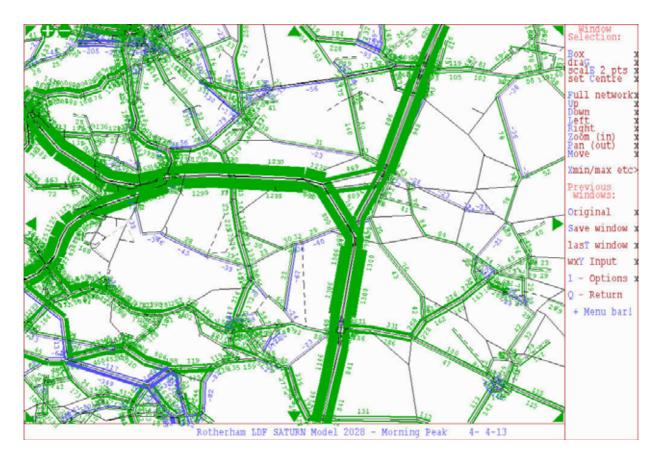
Appendix F: Base to Do Minimum Flow and Delay Difference Plots

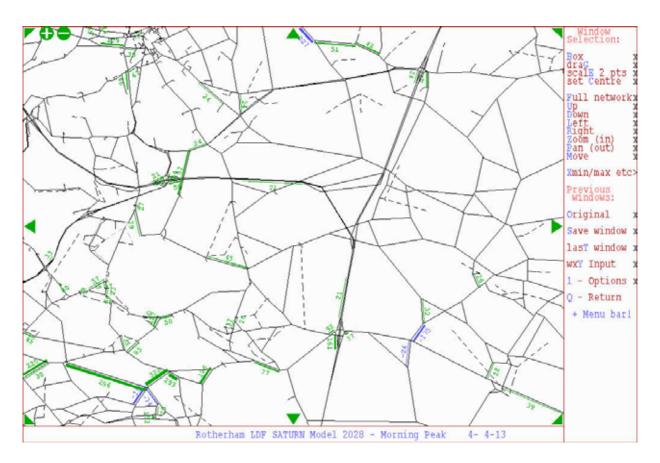
Flow Difference, Rotherham Town Centre, AM

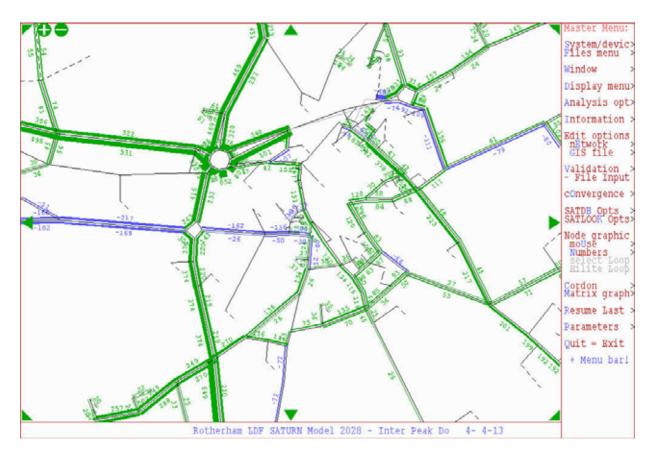

Delay Difference, Rotherham Town Centre, AM

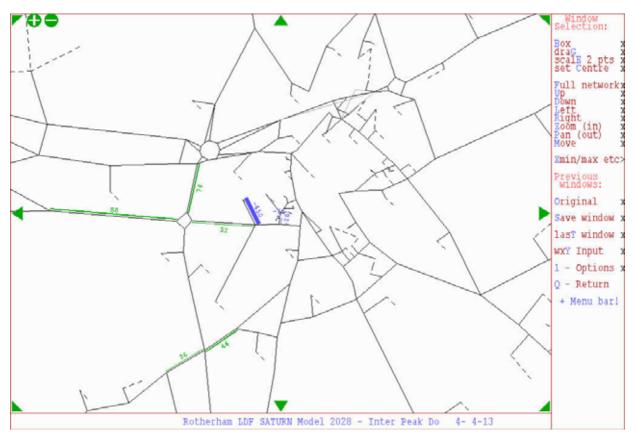

Flow Difference, Rotherham, AM

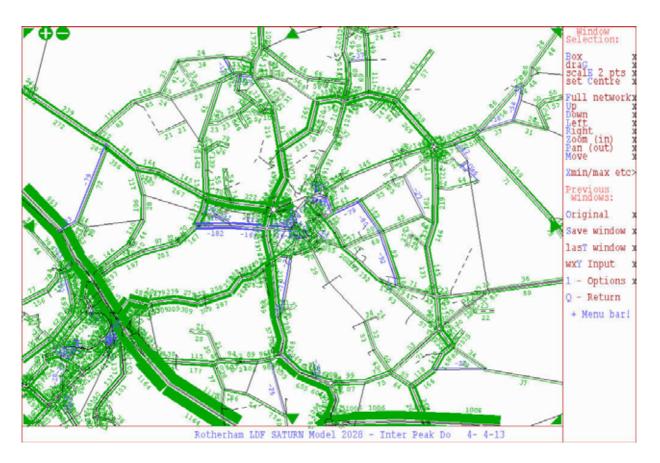

Delay Difference, Rotherham, AM

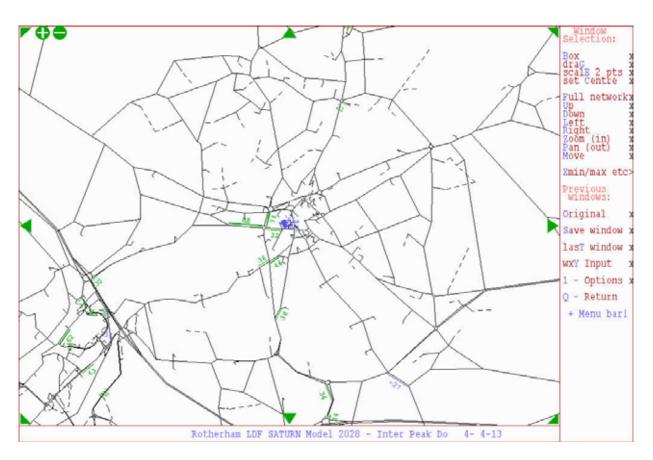

Flow Difference, North of Rotherham, AM

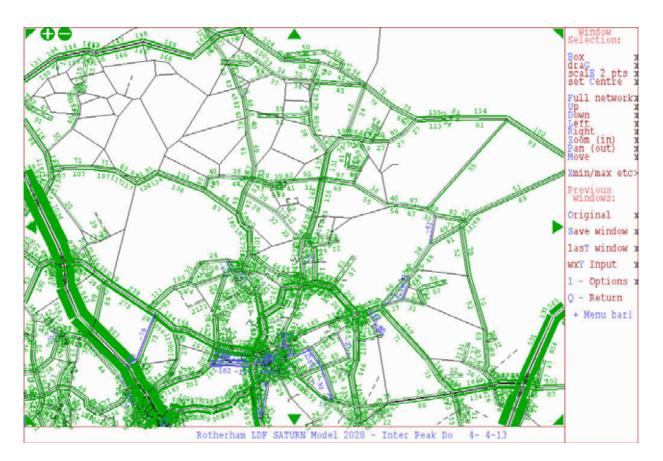

Delay Difference, North of Rotherham, AM

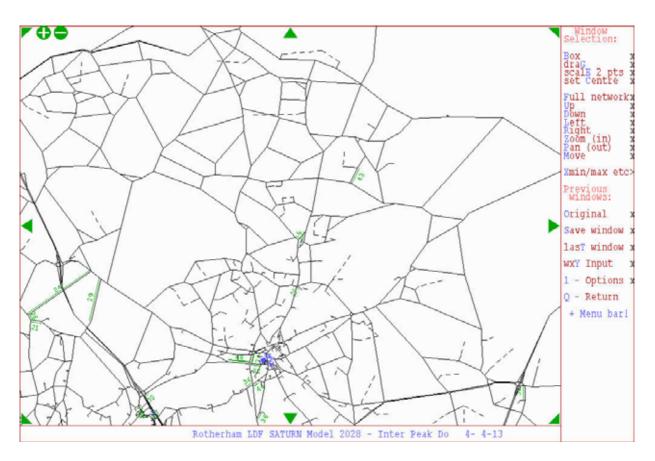

Flow Difference, South of Rotherham, AM

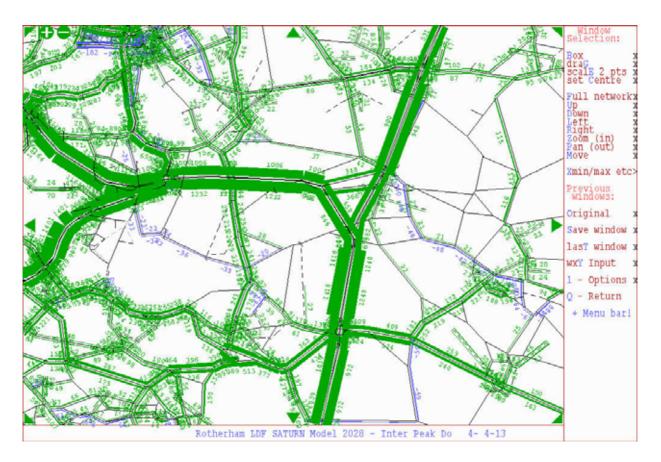

Delay Difference, South of Rotherham, AM

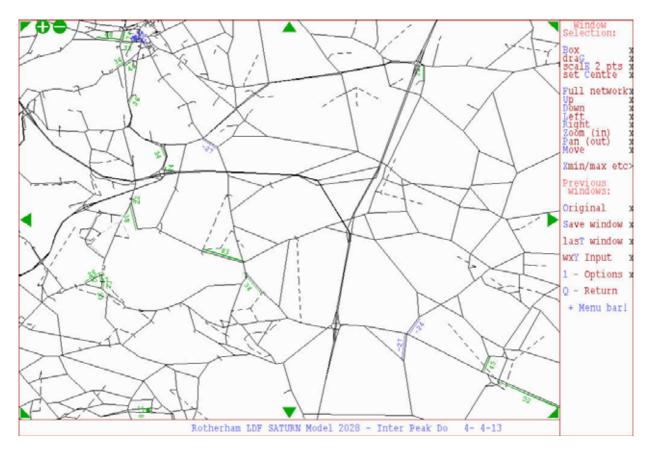

Flow Difference, Rotherham Town Centre, IP


Delay Difference, Rotherham Town Centre, IP

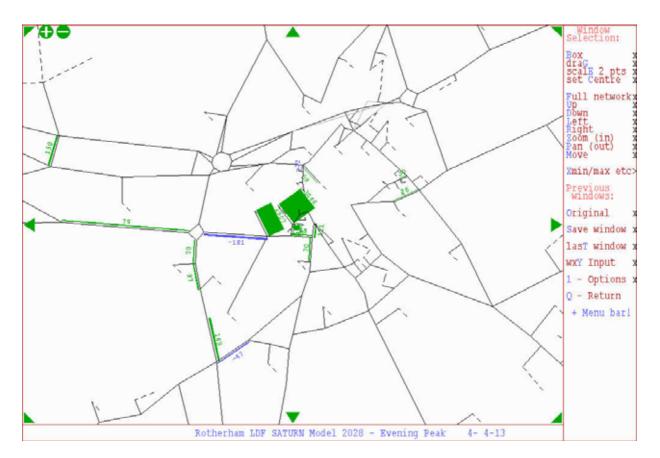

Flow Difference, Rotherham, IP

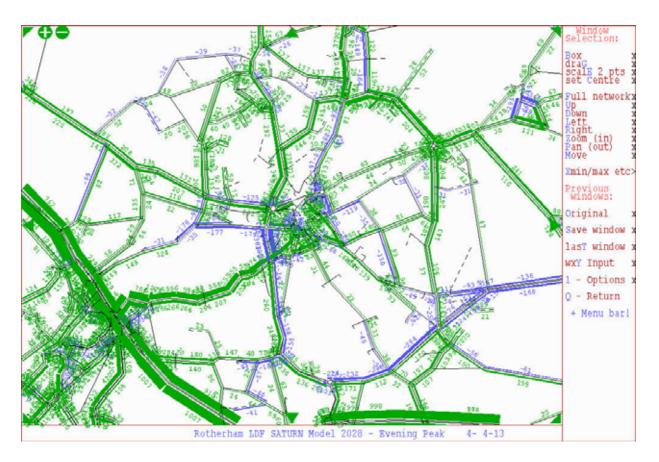

Delay Difference, Rotherham, IP


Flow Difference, North of Rotherham, IP

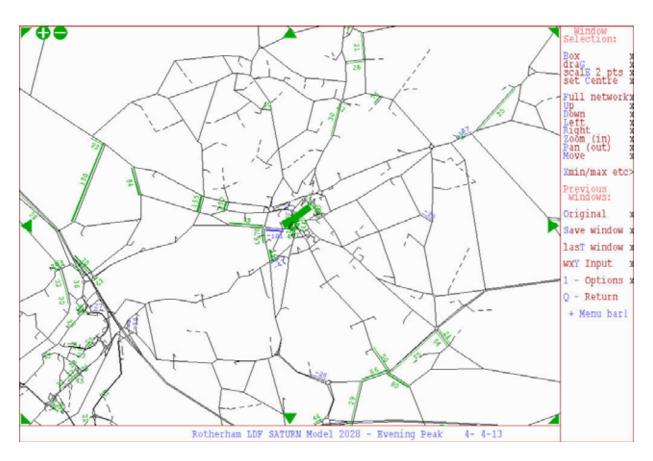

Delay Difference, North of Rotherham, IP

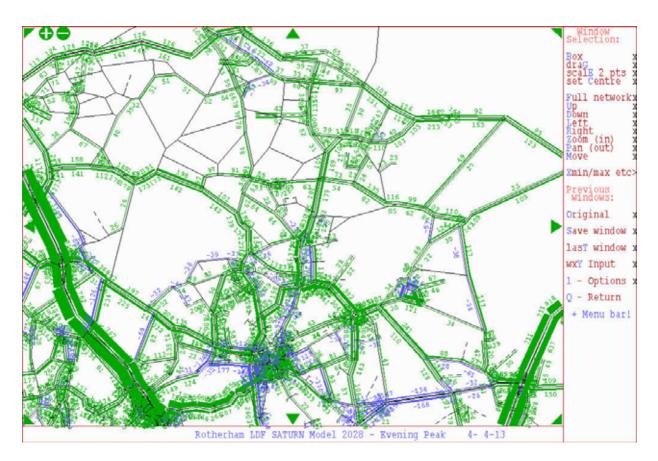
Flow Difference, South of Rotherham, IP

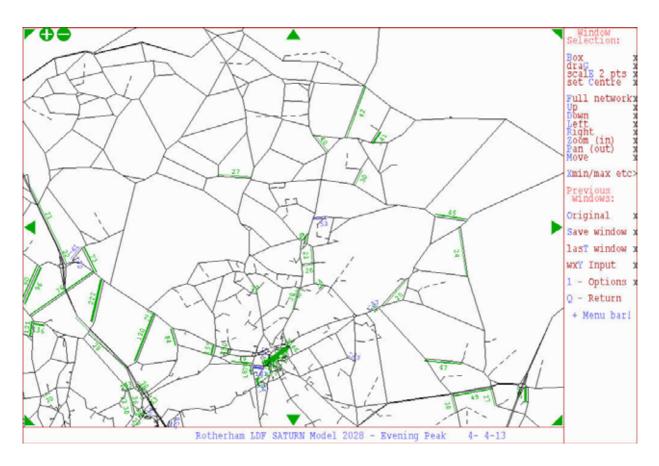

Delay Difference, South of Rotherham, IP

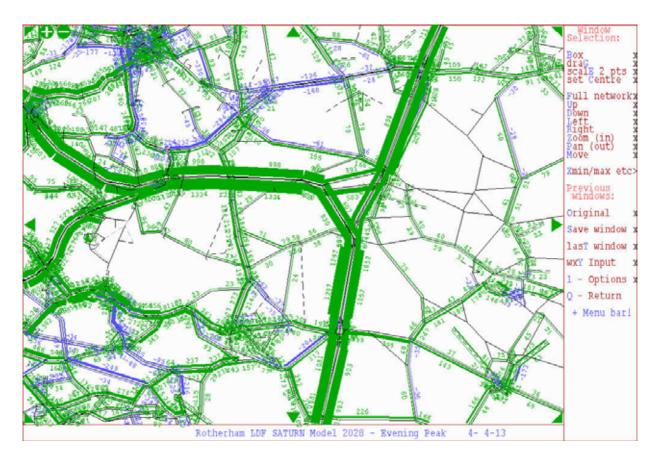

Ŧ aster Menu System/devic Window Display menu> Analysis opt> Information Edit options nEtwork GIS file Validation - File Input convergence Node graphic moUsé Numbers Select I Hilite I Cordon Matrix graph Resume Last Parameters Quit = Exit + Menu bar! Rotherham LDF SATURN Model 2028 - Evening Peak 4-13 4-

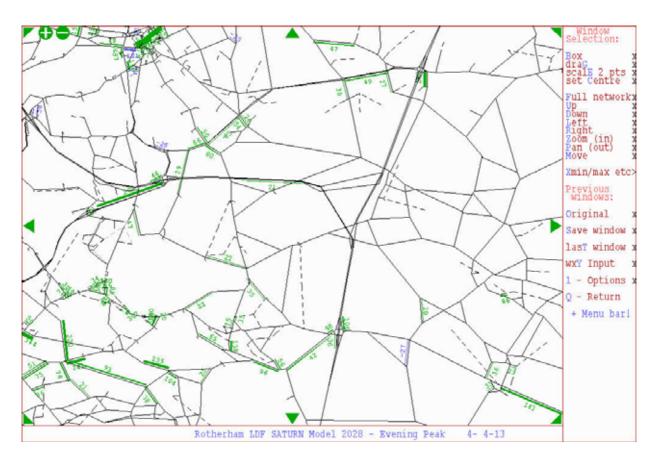
Flow Difference, Rotherham Town Centre, PM

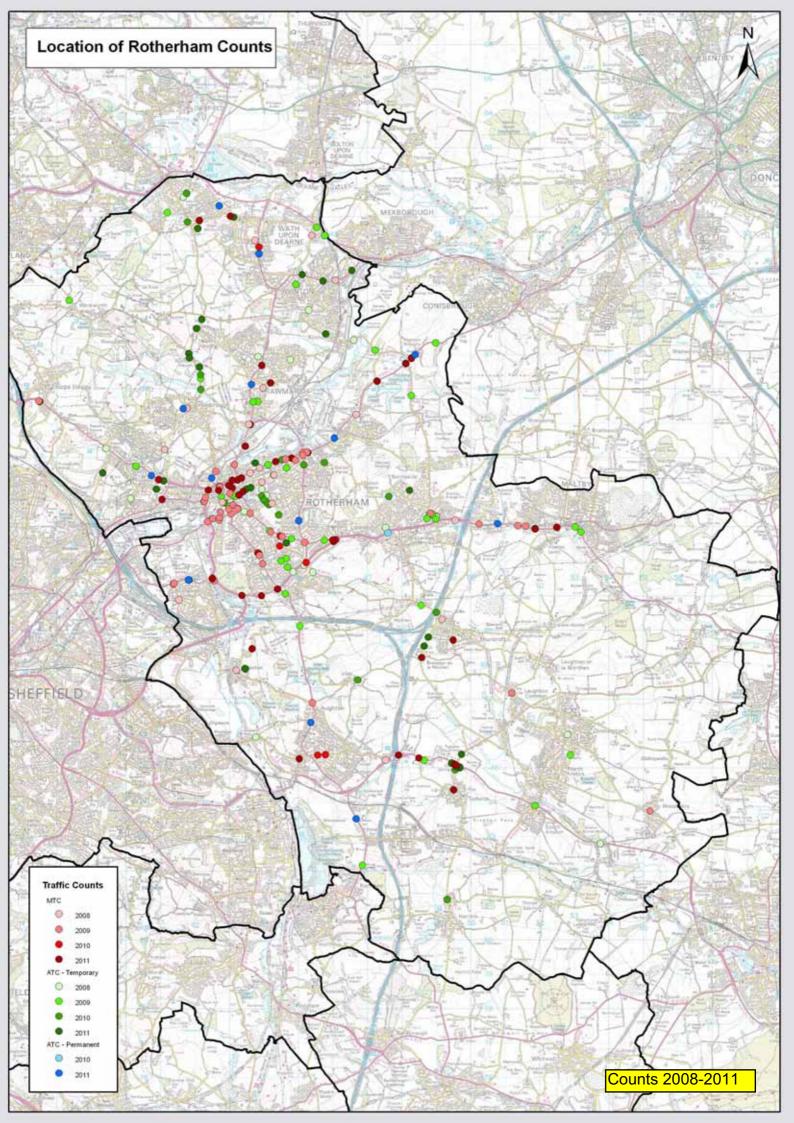

Delay Difference, Rotherham Town Centre, PM

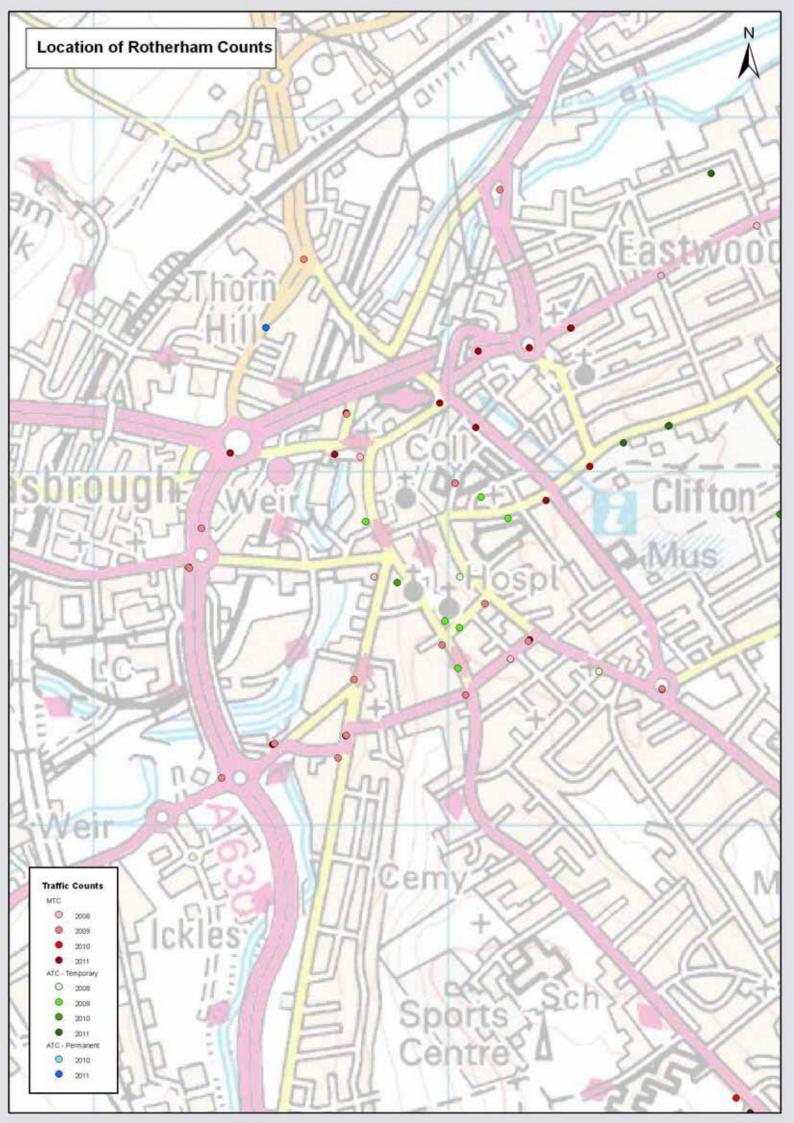

Flow Difference, Rotherham, PM

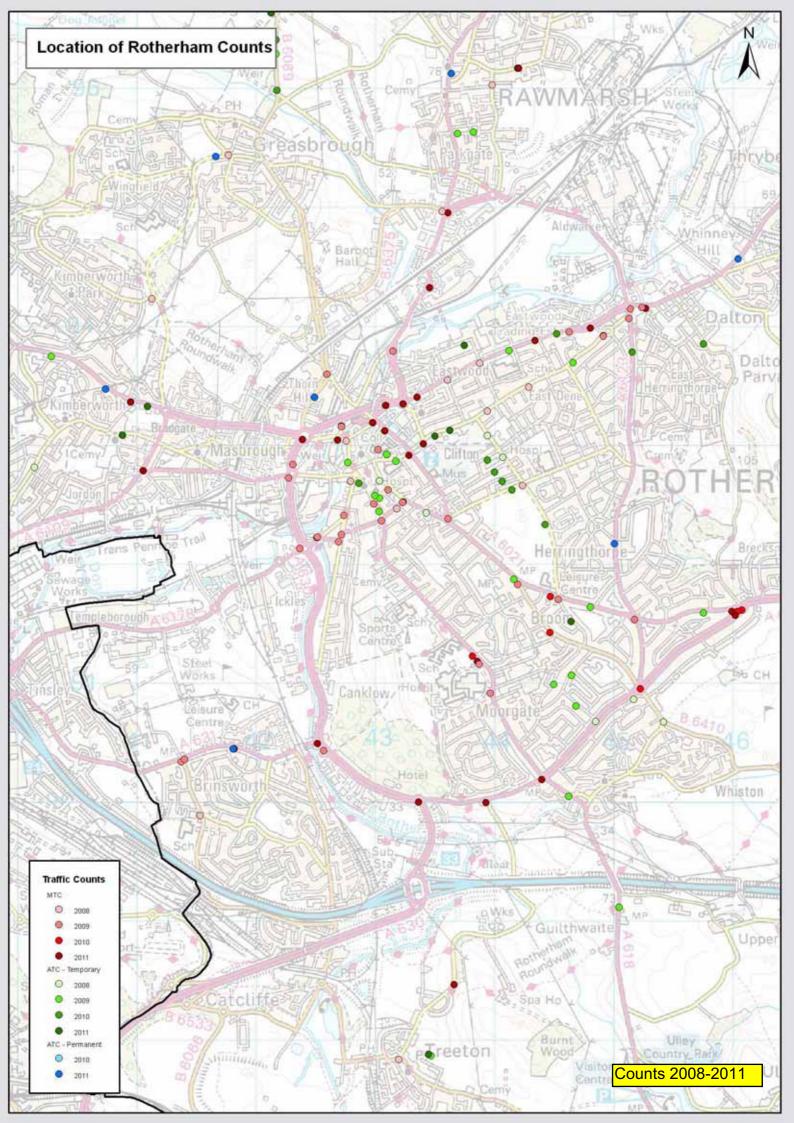

Delay Difference, Rotherham, PM

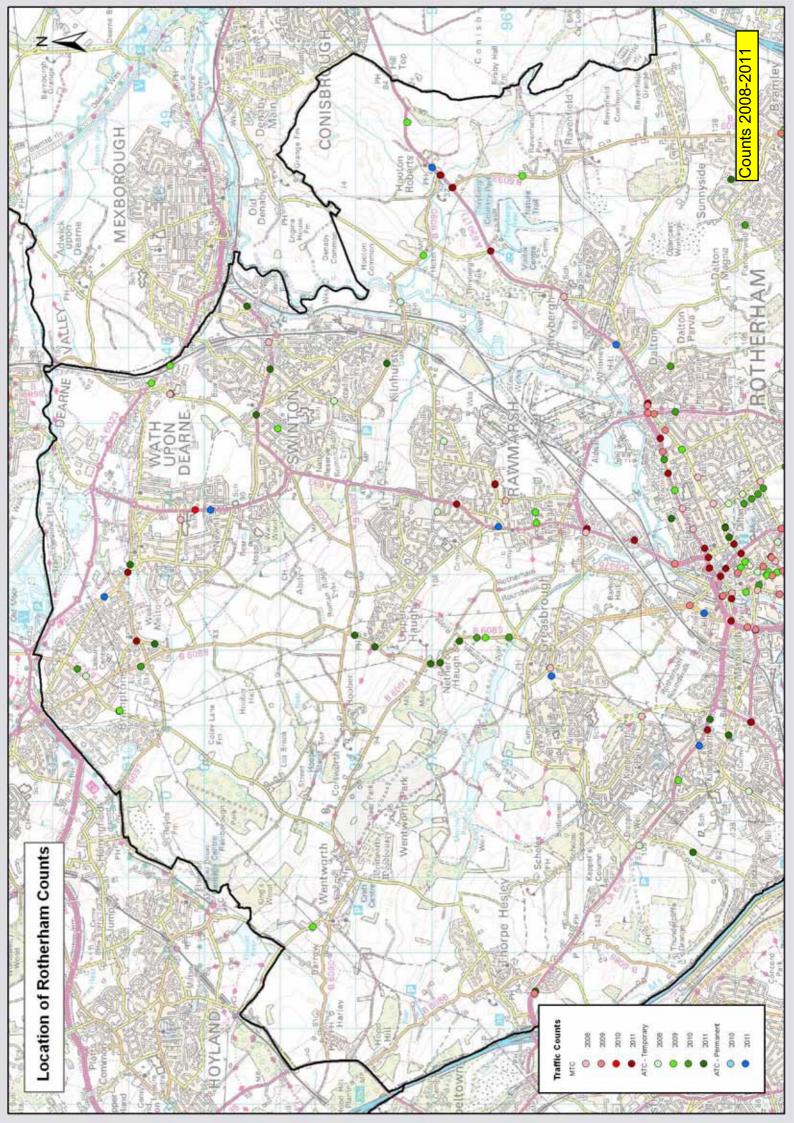

Flow Difference, North of Rotherham, PM

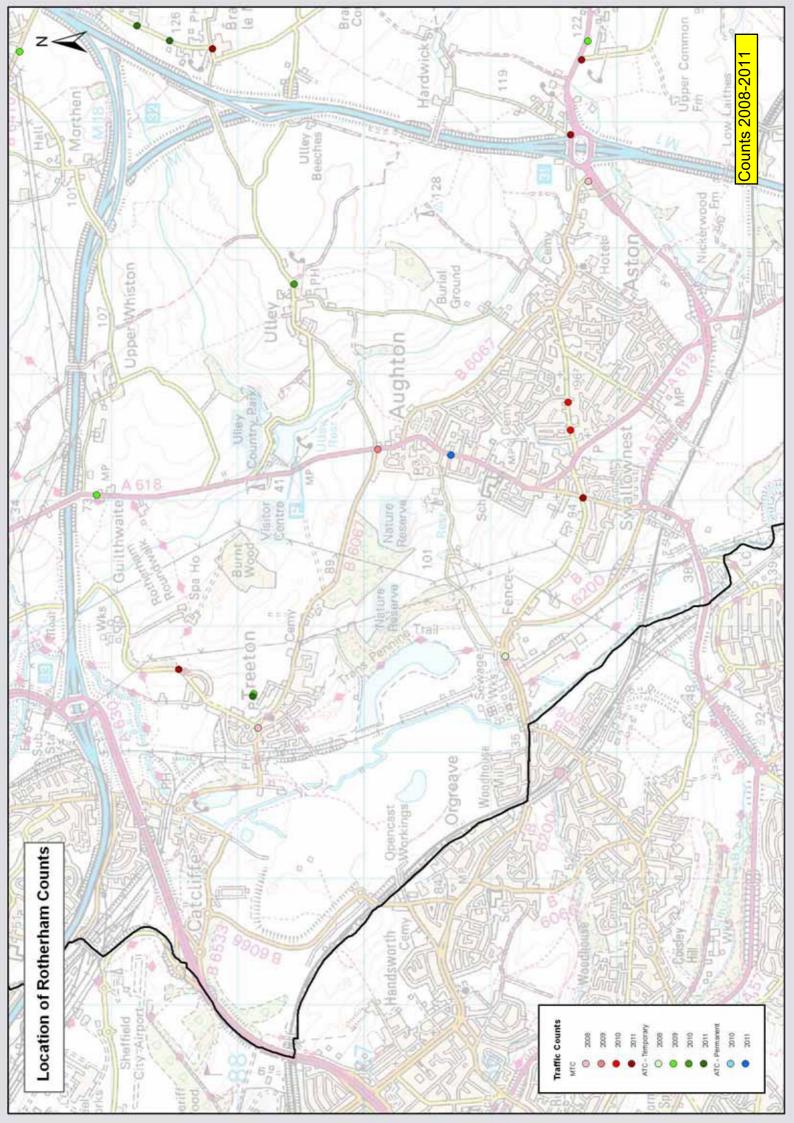

Delay Difference, North of Rotherham, PM


Flow Difference, South of Rotherham, PM




Delay Difference, South of Rotherham, PM




Appendix G – Location of Traffic Counts in Rotherham

