Appendix A - Map showing the location of Do-Minimum improvements schemes and proposed mitigation measures

Appendix B
$\underset{\substack{\text { Risk Matrix for Rotherham LDF Modelling Methodology } \\ \text { v.1. } 1 \text { 1.-Jul-12 }}}{ }$

10	Dato	Status	$\left.\right\|^{\text {Risk }}$	Impa	IMtigat	her data required		timescales of data coliection and Short (<1 week) Med Long (>1 month)	$\left.\right\|^{\text {Recommendded Mitigation }}$
	${ }^{\text {ase Model }}$	validition			1. Re-validate the SATURN highway model to a 2012 base year 2. Re-validate the PT model				
2	${ }^{120772012}$	ive		- Matix building could be open to criticism -The matrix may not represent urtirnt trafic pattern if they have changed sigignificanty in the past 6 years.	Collect new RIS data and re-build the prior matrices	Nee RIS	Figh	Long	
3	${ }^{120712012}$	ive		- Matix builiding could be open to criticism	pand old RIS to new ATC counts	New ATCs for all RIS sites (approx 100 sites across Rotherham and Sheffield)	${ }^{\text {High }}$	Med	
4	120	Ilve	ME is minimised (TAG Unit 3.19 para 8.3 .3 .	- Matrix building could be open to criticism - ME may alter the shape of the matrix and distoprt the trip length distribution		None	2. Low	$\begin{aligned} & \text { 1. Med } \\ & \text { 2. Short } \end{aligned}$	
	12077201	$\begin{aligned} & \text { peing } \\ & \text { address } \end{aligned}$		-Model calibationvalidalion could be open io	1. Collect new ATCs at all count site locations used in cal/val 2. Collect new ATCs at important locations and where new MCCs have been collected 3. Use existing nearby ATCs	one			We recommend - collecting new ATCs at important locations (ensuring that the model will be robust where it matters) - collecting new ATCs where new MCCs are being collected (demonstrating a willing to adhere to new TAG where practical), and - using existing nearby ATCs in less critical areas (keeping the cost and timescales proportionate to the study)
${ }^{6}$	${ }^{120772012}$	ve	TAG recommends that the use of MCCCs to derive average user class sppist to apply to ATc, should be avoided (TAG Unit 3.19 para 4.4.4)	-Model calibration Valication could be open to	1. Colect new MCCC at al ATC count 1ocations used in calval 2. Use nearby MCCs to split ATCS into user class		$\left.\right\|^{\text {1. High }}$	1. Med	We recommend using nearby MCCs to split ATCs because it would be disproportionate to the scope of the study to collect and process a significant number new MCCs.
	120772012	ive	For ME, TAG recommends using screenline orn mini-screennine counts rather than individual ink counts (TAG Unit 3.19			1. New ATCs and MCCs 2. None 3.None	$\begin{aligned} & \text { 1. Meddigh } \\ & \text { 2. Low } \\ & \text { 3. Low } \end{aligned}$	$\begin{aligned} & \text { 1. Med } \\ & \text { 2. Short } \\ & \text { 3.Short } \end{aligned}$	
	recasting	ve	Method to control overall level of unconstrained" future year demand 1. National Trip End Model (NTEM 2. But NTEM growth also takes account of exogenous changes through time, such as changes to car ownership and household structure.	Could over or underestimate the total level o ture year demand					
	${ }^{120772012}$	Ive	Method to prepare 'constrained' demand taking account of changes in values of time, vehicle operating costs, PT fares, congestion and future year schemes.			Vone	1. High 2. See separate sheet for comparison between SRTM2 and SRTM3	1. Med/Long 2. See separate sheet for comparison between SRTM2 and SRTM3	We recommend using a VDM to take account of future year changes in travel costs and adjust the demand accordingly to ensure a more robust assessment. We recommend using SRTM2 (see separate sheet for discussion)
10	71201	ive	Use of Variable Demand Model (VDM) for testing mitigation measures	- Fixed demand for the 'with mitigation' would not account for any mode or destination response as a result of the mitigation - VDM runs for the 'with mitigation' would take longer to run (days rather than hours) and may not have a material impact on the assessment (depending on the mitiagtion being tested)	1. Run VOM for each 'with mitigaion' test		${ }^{1 . \text { High }}$	$\begin{aligned} & \text { 1. Medthong } \\ & \text { 2. Med } \end{aligned}$	
11	${ }^{1212072012}$	Ive	Need to agree on what furue yearss to model						
	epresenting	the LDF d	developments The simulation coding in the model does not district boundaries		1. Extend the simulation network	1. Network datat (signal timins etc) .new counts etco outide Rothermam district	${ }^{1 . \mathrm{High}}$	${ }^{1 . \text { Med }}$	
13	21207201	Ive	Trip distribuions of LLFF devoloments foom		1. Use a gravity mode to distribute tips		OwMed	ShortMed	There is a significant amount of new development in the LDF and we would expect the new housing and jobs to generate trips between each other,we therefore recommend using a gravity model to distribute the new LDF trips.
14	${ }^{120772012}$	Ive	Model zones and zone connectors may not be detailed enough to accuratelty represent access to/from the LDF developments	- Development trips may not appear on the network at the correct locations, which would network at the correct locations, which affect routing and also junction delays	1 Review zones prior to ME and amend as	Furtrer dotais (or agreed assumpinas or or development access	Low	Short	
${ }^{15}$	${ }^{120772012}$	ve	Need to agree LDF development tip			Further details (or arreed assumpions on developonent size, type development size and mode share			
	oope of LDF	$\begin{aligned} & \text { F Impact As } \\ & \hline \text { live } \end{aligned}$							
	${ }^{120772012}$	live	Areme migation measures IItely to includd PT						
18	${ }^{1200712012}$	ve	Need to agree the types of model output and analysis we provide, both for use in identifying impacts of LDF and mitigation, and for final impacts of						
${ }^{19}$	2072012	ve	What is the target network performance when considering required mitigation measures: is it current levels of delay, all junctions operate within capacity, or would you be willing to accept some delays in order to deliver the LDF?						
	21072012	ive	How to develop mitiagtion measures - there could be merit in working with an RMBC officer to develop and test mitigation, using the model as a tool.						
	120712012	ve	To what extent do we (MVA and RMBC) need to consider the affordability and deliverability of mitigation measures						

Appendix B

Risk Matrix - SRTM2 vs SRTM3
v1.1 17-Jul-12

No	Model element	SRTM2	SRTM3	Comments
1	Model system	SATURN highway assignment PT-TRIPS PT assignment DIADEM demand model Approx 2-3 day run time for 2036 Simple set up	SATURN highway assignment Voyager PT assignment Bespoke TRAM-based demand model (with optional parking and park-and-ride models) Approx 4 day run time for 2036 More complicated set-up	- SRTM2 will be quicker and easier to use 'out of the box' - SRTM2 setup is much simpler than SRTM3 and is less prone to user input errors - SRTM2 was used for Waverley Link Road - SRTM3 was used for BRT North and South, Penistone Road, INTEGR8 (park-and-ride study) and Sheffield's City Centre Masterplan review
2	Matrix basis	Origin-Destination based	Production-Attraction and Tour based, so trips throughout the day are linked	- Tour based demand matrices are important for appraising schemes that differ by time period (such as Road User Charging), and that impact mode choice (ie if you go to work by PT you cannot come back by car), however this functionality is not relevant for assessing the impact of the LDF. - PA-tour based matrices are useful for linking both production and attraction ends of trips (ie for a commute tour you must return to the same home as you came from), however the current system is not set up to do this for new development trips
3	Main modes	Car, PT	Car, PT, Walk/Cycle	- The inclusion of walk/cycle as a main mode allows for a proper PT demand response as PT scheme demand often draws from walk/cycle rather than car, however this is unlikely to impact significantly on the assessment of the LDF
4	Time periods	$\begin{aligned} & 3 \text { time periods: 0800-0900, avg 1000-1600, } \\ & 1700-1800 \end{aligned}$	9 time periods: 0700-0800, 0800-0900, $0900-1000$, avg 1000-1300, avg 1300- $1600,1600-1700,1700-1800,1800-1900$, avg 1900-2300.	- Micro-time period choice is important for appraising schemes that differ by time period (such as RUC), and for modelling parking and park-and-ride, but is not necessary for assessing the LDF - More time periods to assign means the model takes longer to run
5	Parking capacity restraint model	Does not include a parking model	Includes optional parking restraint model in Sheffield city centre, but not Rotherham (can be turned off if not required)	- Parking restraint in Sheffield could impact the choice of mode for trips between Rotherham and Sheffield, and may supress car demand for future years, however we have found the impact to be smaller than expected - The SRTM3 parking model requires more user inputs, checking and run time
6	Park-and-Ride model	Does not include P\&R model as standard, however there is a post-VDM add-on P\&R module that can be used to adjust the matrices to test new P\&R sites or to include them in future year reference demand forecasts	Includes optional P\&R model which acts as a main mode in the VDM (can be turned off if not required)	- The SRTM2 P\&R module has not been used in earnest for several years, so would require some effort to 'get out of the box' and potentially re-calibrate - The SRTM3 P\&R model requires more user inputs, checking and run time
7	PT crowding	PT model is in PT-TRIPS so does not include crowding	PT model is in Voyager and includes crowding	- Crowding is important for appraising PT schemes, such as BRT, but is unlikely to have a significant impact on the LDF assessment. Without crowding there is an inherent assumption that PT operators will change their fleet in line with demand.
8	PT costs	PT costs are fixed on each loop of the VDM	PT costs change on each loop of ther VDM is response to chnages in highway congestion (for PT sub-modes using road) and crowding	- Arguably not required for assessing the LDF
9	Assignment user class	Employers Business, Commute, Other, LGV, OGV	Employers Business, Other Low Income, Other Medium Income, Other High Income, LGV, OGV	- Assignment demand was segmented by income bands in SRTM3 (required for appraising RUC and useful for BRT) but this is not necessary for assessing the LDF, indeed it may be preferable to maintain the difference between commute and other in the assignments
10	Data extracton	SATURN matrices	SQL-based databases	- SRTM3 is more flexible for extracting trip demand data, however most of the data extraction for LDF will be from the highway assignments (delays etc) rather than demand-based, in which case the two models are equal.
11	Zone system	510 zones plus 20 'dummy' zones	525 zones	- SRTM2 has 20 dummy zones (originally intended for testing proposed P\&R sites) which could be used to improve the representation of LDF developments - SRTM3 does not include dummy zones so would be more difficult to change to zone system to represent the LDf developments

Appendix D - Network Statistics by Area

	AM			IP			PM		
	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff
Distance (veh-kms)	292,424	340,645	16\%	230,940	282,304	22\%	301,191	346,712	15\%
Time (veh-hrs)	6,897	8,629	25\%	5,373	6,643	24\%	7,702	9,934	29\%
Total Delay (veh-hrs)	987	1,760	78\%	620	955	54\%	1,502	2,890	92\%
Delay per veh-km (secs)	12	19	53\%	10	12	26\%	18	30	67\%
Average Speed (kph)	42	39	-7\%	43	42	-1\%	39	35	-11\%

Rotherham Urban Area

	AM			IP			PM		
	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff
Distance (veh-kms)	141,435	162,646	15\%	112,158	133,622	19\%	142,338	159,989	12\%
Time (veh-hrs)	3,265	4,114	26\%	2,575	3,188	24\%	3,633	4,353	20\%
Total Delay (veh-hrs)	412	784	90\%	252	427	69\%	668	1,030	54\%
Delay per veh-km (secs)	10	17	65\%	8	11	42\%	17	23	37\%
Average Speed (kph)	43	40	-9\%	44	42	-4\%	39	37	-6\%

Wath, Swinton, Rawmarsh

	AM			IP			PM		
	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff
Distance (veh-kms)	35,403	41,352	17\%	26,173	31,542	21\%	36,269	42,339	17\%
Time (veh-hrs)	921	1,160	26\%	682	812	19\%	972	1,143	18\%
Total Delay (veh-hrs)	116	226	94\%	64	97	52\%	119	186	56\%
Delay per veh-km (secs)	12	20	66\%	9	11	26\%	12	16	33\%
Average Speed (kph)	38	36	-7\%	38	39	1\%	37	37	-1\%

Maltby, Dinnington, Thurcroft

	AM			IP			PM		
	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff
Distance (veh-kms)	41,660	49,933	20\%	34,187	41,494	21\%	43,376	51,610	19\%
Time (veh-hrs)	777	932	20\%	624	763	22\%	849	1,059	25\%
Total Delay (veh-hrs)	64	87	37\%	45	69	55\%	103	176	70\%
Delay per veh-km (secs)	5	6	15\%	5	6	28\%	9	12	43\%
Average Speed (kph)	54	54	0\%	55	54	-1\%	51	49	-5\%

Aughton, Wales

| |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

2011 Base

Rotherham rural									
	AM			IP			PM		
	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff
Distance (veh-kms)	43,826	52,350	19\%	34,388	45,308	32\%	48,183	57,379	19\%
Time (veh-hrs)	880	1,105	26\%	660	834	26\%	962	1,216	26\%
Total Delay (veh-hrs)	63	165	164\%	25	38	49\%	76	194	154\%
Delay per veh-km (secs)	5	11	121\%	3	3	13\%	6	12	114\%
Average Speed (kph)	50	47	-5\%	52	54	4\%	50	47	-6\%

\footnotetext{
Rotherham Town Centre

	AM			IP			PM		
	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff	2011 Base	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	\%Diff
Distance (veh-kms)	14,477	15,810	9\%	13,146	14,957	14\%	14,260	15,165	6\%
Time (veh-hrs)	671	670	0\%	580	632	9\%	877	1,087	24\%
Total Delay (veh-hrs)	287	261	-9\%	220	245	11\%	489	696	42\%
Delay per veh-km (secs)	71	59	-17\%	60	59	-2\%	124	165	34\%
Average Speed (kph)	22	24	9\%	23	24	4\%	16	14	-14\%

Appendix D - Network Statistics by Area

	AM			IP			PM		
	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff
Distance (veh-kms)	340,645	339,862	0\%	282,304	281,416	0\%	346,712	349,283	1\%
Time (veh-hrs)	8,629	8,413	-3\%	6,643	6,620	0\%	9,934	9,434	-5\%
Total Delay (veh-hrs)	1,760	1,572	-11\%	955	959	0\%	2,890	2,362	-18\%
Delay per veh-km (secs)	19	17	-10\%	12	12	1\%	30	24	-19\%
Average Speed (kph)	39	40	2\%	42	43	0\%	35	37	6\%

Rotherham Urban Area

	AM			IP			PM		
	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff
Distance (veh-kms)	162,646	162,975	0\%	133,622	133,538	0\%	159,989	163,343	2\%
Time (veh-hrs)	4,114	4,079	-1\%	3,188	3,217	1\%	4,353	4,335	0\%
Total Delay (veh-hrs)	784	742	-5\%	427	456	7\%	1,030	941	-9\%
Delay per veh-km (secs)	17	16	-5\%	11	12	7\%	23	21	-10\%
Average Speed (kph)	40	40	1\%	42	42	-1\%	37	38	3\%

Wath, Swinton, Rawmarsh

	AM			IP			PM		
	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff
Distance (veh-kms)	41,352	40,763	-1\%	31,542	30,538	-3\%	42,339	41,437	-2\%
Time (veh-hrs)	1,160	1,135	-2\%	812	787	-3\%	1,143	1,115	-2\%
Total Delay (veh-hrs)	226	214	-5\%	97	93	-4\%	186	178	-4\%
Delay per veh-km (secs)	20	19	-4\%	11	11	0\%	16	15	-2\%
Average Speed (kph)	36	36	1\%	39	39	0\%	37	37	0\%

Maltby, Dinnington, Thurcroft

	AM			IP			PM		
	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff
Distance (veh-kms)	49,933	49,913	0\%	41,494	41,753	1\%	51,610	51,154	-1\%
Time (veh-hrs)	932	927	-1\%	763	765	0\%	1,059	1,046	-1\%
Total Delay (veh-hrs)	87	86	-2\%	69	70	0\%	176	175	-1\%
Delay per veh-km (secs)	6	6	-2\%	6	6	0\%	12	12	0\%
Average Speed (kph)	54	54	0\%	54	55	0\%	49	49	0\%

Aughton, Wales

	AM			IP			PM		
	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff
Distance (veh-kms)	18,488	18,502	0\%	15,161	15,153	0\%	20,484	20,682	1\%
Time (veh-hrs)	498	500	0\%	357	356	0\%	599	602	0\%
Total Delay (veh-hrs)	92	94	2\%	30	30	-1\%	146	145	0\%
Delay per veh-km (secs)	18	18	2\%	7	7	-1\%	26	25	-1\%
Average Speed (kph)	37	37	0\%	42	43	0\%	34	34	1\%

Rotherham rural

	AM			IP			PM		
	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff
Distance (veh-kms)	52,350	51,665	-1\%	45,308	45,238	0\%	57,379	57,272	0\%
Time (veh-hrs)	1,105	1,090	-1\%	834	829	-1\%	1,216	1,216	0\%
Total Delay (veh-hrs)	165	169	2\%	38	39	4\%	194	200	3\%
Delay per veh-km (secs)	11	12	4\%	3	3	4\%	12	13	4\%
Average Speed (kph)	47	47	0\%	54	55	0\%	47	47	0\%

Rotherham Town Centre

	AM			IP			PM		
	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff	$\begin{array}{r} 2028 \\ \text { DM } \end{array}$	2028 Mitigation	\%Diff
Distance (veh-kms)	15,876	16,044	1\%	15,177	15,196	0\%	14,911	15,396	3\%
Time (veh-hrs)	819	680	-17\%	690	665	-4\%	1,564	1,120	-28\%
Total Delay (veh-hrs)	406	267	-34\%	294	271	-8\%	1,159	723	-38\%
Delay per veh-km (secs)	92	60	-35\%	70	64	-8\%	280	169	-40\%
Average Speed (kph)	19	24	22\%	22	23	4\%	10	14	44\%

Appendix E: Junction Performance Plots Morning Peak Plots

coser

Interpeak Plots

4

Evening Peak Plots

(a)

coser

Appendix F: Base to Do Minimum Flow and Delay Difference Plots

Flow Difference, Rotherham Town Centre, AM

Delay Difference, Rotherham Town Centre, AM

Flow Difference, Rotherham, AM

Delay Difference, Rotherham, AM

Flow Difference, North of Rotherham, AM

Delay Difference, North of Rotherham, AM

Flow Difference, South of Rotherham, AM

Delay Difference, South of Rotherham, AM

Flow Difference, Rotherham Town Centre, IP

Delay Difference, Rotherham Town Centre, IP

Flow Difference, Rotherham, IP

Delay Difference, Rotherham, IP

Flow Difference, North of Rotherham, IP

Delay Difference, North of Rotherham, IP

Flow Difference, South of Rotherham, IP

Delay Difference, South of Rotherham, IP

Flow Difference, Rotherham Town Centre, PM

Delay Difference, Rotherham Town Centre, PM

Flow Difference, Rotherham, PM

Delay Difference, Rotherham, PM

Flow Difference, North of Rotherham, PM

Delay Difference, North of Rotherham, PM

Flow Difference, South of Rotherham, PM

Delay Difference, South of Rotherham, PM

Appendix G - Location of Traffic Counts in Rotherham

Proposed New Counts in Rotherham

Proposed New Counts in Rotherham

